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1. Introduction 
Many parameters must be accounted for in creating a Self-Organizing Map (SOM). 
These parameters can dramatically change the content and organization of a SOM, but 
it is often hard to find instructions. Despite a large body of published literature (Oja et 
al., 2003 and Kaski et al., 1998) we have not yet discovered any single book or article 
which outlines a complete set of guidelines on how to build a SOM effectively. 
Existing literature does reference individual metrics for specific parameters and we 
draw these together in this paper. This research establishes guidelines for the creation 
of meaningful SOMs, drawn from empiric testing as well as 'best practice' 
conventions. We create SOMs using different initialization parameters, training levels, 
network shape and node size, comparing outputs, uncertainty measures and 
interpretations, using Kohonen's MatLab toolbox.  

2. Pilot Study Data 
The pilot study dataset contains binary information listing 108 GIS hydrologic 
operators categorized on ten distinct dimensions (Table 1).  

 
Table 1. Dimensions characterizing GIS commands, attributes in italics refer to 

degrees of freedom (discussed in section 2). 

 
 
The original contribution of this pilot study was the generation of implicit keywords 
describing software commands. Most SOMs are built for full text documents form 
which explicit keywords can be obtained. One challenge specific to software tools and 
commands is to establish semantics for implicit keywords. Manuscripts such as 



articles, news stories or full-text documents can be distinguished by keywords which 
are explicitly incorporated; but this is not the case with software libraries. While 
environmental models are typically distributed with documentation, formalized 
description methods for software commands are generally not well-developed. Other 
challenges include interpreting the dimensionality of the resulting catalog, and 
determining the optimal number of keywords (dimensions) which will best distinguish 
among the catalog entries. Generation of implicit keyword sets is broadly applicable to 
many problem domains in addition to software libraries, such as intercorrelated census 
data sets. 
 
For the compilation of this dataset, source materials and online help files from 
commercially available GIS and statistical analysis products were used to refine the list 
and eliminate redundancy. Data handling aspects were also captured, such as whether 
the operators modify spatial relationships, whether they operate on geometry or 
attributes, what data model is required for input and output, etc. To eliminate 
dimensional redundancy, degrees of freedom were removed; e.g. binary coding of only 
two of the three options of global, regional and local operators is required, since 
knowledge about the first two eliminates the need to code the third. A Boolean matrix 
of the ten dimensions for the 100 operators was processed by Kohonen's SOM method 
(Kohonen, 2001) using existing toolsets in MatLab. We will discuss implicit keyword 
formation in more detail at the conference. 

 

3. Guidelines for building SOMs 
We augmented guidelines from existing literature with empiric testing. The established 
guidelines were grouped into six categories, which form a rough sequence of steps 
through SOM creation: 
 1. Initialization  
 2. SOM size 
 3. SOM shape  
 4. Neighborhood size and geometry 
 5. Training length and matrix-tuning 
 6. Quantification of uncertainty 
 

3.1 Initialization 
Tests were conducted using random and linear initialization. Normalization was not 
necessary for the binary dataset. Skupin (2008) recommends using a random 
initialization process as it preserves true self-organization. 

3.2 SOM Size 
Initial qualitative recommendations for selecting SOM size range from identifying the 
goal of the SOM to building small, medium and large SOMs depending on the purpose 
of the data exploration (Ultsch and Simon, 1990). Vesanto (2005) offers a specific 
quantitative recommendation to compute optimal SOM size (Vesanto, 2005): 

����� = 5 × √�     (1) 
where n is the product of observations (rows) and variables (columns) of the dataset. 
Optimal size will minimize the chance of creating a SOM with too many empty cells 
(but note that some empty cells are needed to facilitate cluster interpretation). Initial 
tests included SOMs of sizes ranging from 64 to 1024 cells (Figure 1). The ����� for 



our dataset was computed to be 169 for an input matrix of 108 observations and 10 
variables. Figure 1 shows that in this optimal solution clusters are well developed and 
there is plenty of space between clusters to permit easy distinctions. 

 
Figure 1. SOM visualization of the "Flow" dimension across different SOM sizes 

 

3.3 SOM Shape 
Quantitative recommendations by Kohonen (1990) suggest an asymmetrical rather 
than a symmetrical SOM shape to avoid edge effects. His advice is that the short side 
length should be at least half of the longer side of the SOM. We have come to think of 
this suggestion as the "One-Half Rule". In our tests, a symmetrical shape situated 
clusters more often than an asymmetrical shape towards the edge of the SOM. . 
Interior cluster locations are easier to interpret, since their distance to other clusters on 
all sides can be judged. Building on the One-Half Rule, the optimal SOM shape 
solution was a SOM of 16x11 (176) cells. Notice this is slightly more cells than the 
msize computation advises, but the difference is small. 

3.4 Neighborhood Size and Geometry 
Neighborhood characteristics affect cluster formation by constraining the number of 
cell values which are adjusted following each cell assignment. We conducted tests by 
systematically adjusting neighborhood size and geometry. Best results where archived 
when using a Gaussian kernel. To establish best size, in the first training step we 
started with a larger neighborhood size spanning the entire SOM (Skupin, 2008) and 
then progressively reduced the neighborhood to half as the iterations of the learning 
algorithm progressed. If the kernel size reaches 0 the SOM algorithm equates with a K-
means method (Kohonen, 1990). 

3.5 Training length and matrix tuning 
Training length and matrix tuning tests ranging from 1 to 100,000 iterations were 
conducted. As shown in Figure 2, after 1,000 iterations the SOM output begins to 
stabilize and fine-adjustments can be made. For this data set, we found good results 
using a training length of 10,000 and a matrix tuning rate of 2,000. 



 
Figure 2. The 'Flow" SOM visualization across different training iterations for a single 

variable (the "Flow" dimension). 

3.6 Assessment of Uncertainty 
Kohonen commonly uses two metrics to assess the uncertainty of a SOM, the 
Quantization Error and the Unified Distance Matrix (or U-Matrix). The Quantization 
error is defined as: 

�{‖� − ��(�)‖}     (2) 
where c indicates the Best-Matching Unit (BMU) for the input vector x (Honkela, 
1999). The Quantization error returns a value between 1.0 and 0.0 which indicates how 
well the SOM fits the input dataset. The goal is to establish a minimum value, although 
values very close to 0.0 indicate model over-fitting (Kohonen, 2001). The Quantization 
error allows comparable quantitative assessments among different SOMs.  

Figure 3 shows that Quantization Error drops substantially over initial iterations.  
 

 
 

Figure 3. Error measurements by number of iterations for the binary case study dataset 
on the optimal SOM  

 



Table 2 shows the Quantization Error across different SOM shapes. We also conducted 
initial tests exploring 3D SOMs, exploring cylindrical and toroidal solids. Further 
discussion about using 3D SOMs will be presented at the conference. 
 
Table 2. Error comparison of different SOM shapes using 10,000 training iterations 
and 2,000 fine tuning iterations. 
 

SOM size Quantization 
Error  

8x8 0.4586 
16x16 0.1084 
32x32 0.0001 
24x8 0.3160 
16x11 0.1990 
32x6 0.1780 
16x11* 0.2208 
16x11** 0.2850 

            * cylindrical 3D SOM    **toroidal 3D SOM 
 
The Unified Distance Matrix, or U-Matrix indicates quality and clarity of the clusters. 
The U-Matrix contains twice as many cells as the SOM and is defined by similarity 
measurements between each cell and neighboring cells. Initial tests on the U-Matrix 
using different SOM shapes are shown in Figure 4. The 32x32 U-Matrix shows over-
fitting because the cluster borders are too pronounced, whereas the 8x8 does not show 
distinct enough cluster borders. The optimal solution following the recommendation is 
the 16x11 U-Matrix as U-Matrix.  
Kohonen (2001) advises that these two measures (Quantification Error and 
interpretation of the U-matrix) should not be trusted alone without considering other 
factors because, both measures can indicate best results even when the SOM has over-
fitted the data. Other factors to be considered include number of variables, number of 
observations, compactness and positioning of the SOM clusters. 
 

 
Figure 4 U-Matrix across different SOM shapes and sizes. 

 



4. Discussion 
The presentation will cover all six steps for building a SOM. We will offer guidelines 
for building SOMs for a catalog problem set which includes full text documents and 
software routines, demonstrating different impacts of size, shape, training iterations on 
the outcome assessment matrix.  
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