
Parallel Algorithms for Processing Hydrologic
Properties from Digital Terrain

R. M. Wallace
1
, D.G. Tarboton

2
, D.W. Watson

3
, K.A.T. Schreuders

4
, T.K. Tesfa

5

1Information Technology Laboratory, US Army Engineer Research and Development Center,

3909 Halls Ferry Road, Vicksburg, MS 39180, USA
Email: robert.m.wallace@usace.army.mil

2 Department of Civil Engineering, Utah State University,

4110 Old Main Hill, Logan, UT 84322-4110, USA

Email: david.tarboton@usu.edu

3 Department of Computer Science, Utah State University

4205 Old Main Hill, Logan, UT 84322-4204, USA

Email: dan.watson@usu.edu

4 Department of Civil Engineering, Utah State University

4205 Old Main Hill, Logan, UT 84322-4204, USA
Email: kim.schreuders@usu.edu

5 Department of Civil Engineering, Utah State University

4205 Old Main Hill, Logan, UT 84322-4204, USA

Email: t.k.t@aggiemail.usu.edu

1. Introduction

A Digital Elevation Model (DEM) represents land surface topography using a

rectangular raster grid, where each raster cell contains a floating point value equivalent

to the elevation of that geographic point above some base value (usually, sea level)

(Wilson and Gallant, 2000). DEMs have become a vital component of the hydrologic

modeling process and are used for a number of purposes including distributed

hydrologic modelling (Kampf and Burges, 2007) and floodplain mapping (NRC,

2007).

A revolution in the ability to collect elevation data has created a drastic

improvement in the quality and quantity of DEM data. Ground resolution of the raster

cells has improved from 30-100 meter per raster cell 5-10 years ago to 1-5 meter

resolutions today for much of the Earth’s land surface. This accuracy has increased the

size of the DEMs used for hydrologic purposes. For instance, to represent the Provo

River basin in central Utah, 1.73e
5
 hectares (673 mi

2
) at 90-meter posting intervals

requires 4.7e
5
 raster cells; at 30-meter resolution, 4.2e

6
 cells; and at 10-meter

resolution, 3.8e
7
 cells. Because of the increase in raster size, many of the analysis

techniques used for coarser resolutions and smaller DEMs are prohibitively time

consuming when being applied to high-resolution data.

Although increases in computer processor speed and memory and disk availability

have helped enable working with this large data there is a need to adapt hydrologic

algorithms to exploit new parallel processing capability and architectural functionality.

For example Arge et. al. (2002) examined ways to frame key hydrologic terrain

analysis algorithms to take advantage of transparent parallel I/O systems to overcome

some of the I/O bottlenecks that occur when processing large terrain datasets in single

CPU environments. Arge et al. (2002) implemented single flow direction flow routing

(including pit removal) and flow accumulation and showed that efficient algorithms

designed to optimize the reading and writing of blocks of data between memory and

disks based on system component properties can significantly improve processing

times.

This paper describes parallel algorithms that have been developed to enhance

hydrologic terrain processing so that larger datasets can be more efficiently computed.

By physically distributing the hydrologic processing for a single dataset among

compute nodes in a cluster based system or even a multi core desktop computer,

considerable speedup is achieved by simultaneous processing of different portions of

the domain. On a cluster based system this approach also takes advantage of the large

aggregate memory of all the compute nodes working together. Message Passing

Interface (MPI) parallel implementations have been developed for pit removal, flow

direction, and generalized flow accumulation methods within the Terrain Analysis

Using Digital Elevation Models (TauDEM) package (Tarboton and Baker, 2008;

Tarboton et al., 2009).

2. Approach

The parallel algorithms work by decomposing the domain into striped data partitions

where each stripe is processed by a separate processor. This method also reduces the

memory requirements of each processor so that larger size grids can be processed. An

input grid is divided horizontally into equal parts based on the number of processes,

with any extra portion remaining being attached to the last partition. Our algorithm

stores for each partition the one-cell border information in adjacent partitions and uses

a dependency grid to track when these border cells have been evaluated in the adjacent

partition and manage iterative swapping of this information using message passing so

that meandering across stripes is properly handled. The overhead associated with this

iteration, which is input data dependent, is one of the factors that contribute to the

parallel algorithms scaling less efficiently than number of processors to the power -1.

Many of the functions in TauDEM are based on the D-infinity (D∞) multiple flow

direction model (Tarboton, 1997) that represents flow direction as a vector along the

direction of steepest downward slope on eight triangular facets centered at each grid

cell. Flow from a grid cell is shared between the two downslope grid cells closest to

the vector flow angle based on angle proportioning. Contributing area, defined as the

number of grid cells draining through each grid cell, is the simplest example of these

functions, and is used to explain the approach. To calculate the contributing area of a

cell i, all of the cells in the region that drain into i must first be calculated. A

dependency grid that contains at each cell i the number of unevaluated immediate

neighbours that drain into i is used to achieve this. If there are no neighbouring cells, n,

that drain into i, that cell is considered ready for evaluation, so it is placed on the

queue, allowing its contributing area to be calculated. If there is a neighbour that drains

into i, the number of neighbours that drain into i is recorded in the dependency grid.

This number is used later to determine when cell i will be ready to be calculated. Each

process completes this phase in parallel with all other processes.

Each process maintains a queue containing cells that are ready for evaluation and a

grid filled with number of cell dependencies. After the queue has been initialized, each

process begins popping cells off the queue and calculating each cell’s contributing

area. Then the dependency grid at each downslope neighbour is decremented by one. If

the dependency grid becomes zero, all upslope cells have been calculated and the grid

cell is put on the queue. It is possible however that the grid cell may belong to an

adjacent process. In this case, instead of decrementing the dependency grid by one, the

dependency border is decremented. Upon completion of process queues,

communication between processes is performed to swap border dependency

information. The procedure is iterated until all cells have been evaluated.

3. Evaluation

Parallel implementations of the Pit Remove and D Contributing Area functions were

tested (Figures 1 and 2) on: (a) a dual quad-core Xeon E5405 2.0GHz PC with 16GB

RAM (8 processors); and (b) a cluster of 16 diskless Dell SC1435 compute nodes,

each with 2.0GHz dual quad-core AMD Opteron 2350 processors with 8GB RAM

(128 processors total) controlled by a similar Dell SC1435 acting as the head node, and

housing the file system. Each compute node has a dual-port gigabit network adapter,

one of which is reserved for the network file system.

1 2 3 4 5 7

2
0
0

5
0
0

1
0
0
0

Processors

S
e
c
o
n
d
s

ArcGIS

Total

Compute

1 2 5 10 20 50

2
0
0

5
0
0

2
0
0
0

Processors

S
e
c
o
n
d
s

Total

Compute

Figure 1. Parallel Pit Remove timing for NEDB test dataset (14849 x 27174 cells 

1.6 GB). a) 8 processor PC, b) 128 processor cluster.

1 2 3 4 5 7

1
0
0

2
0
0

5
0
0

Processors

S
e
c
o
n
d
s

Total

Compute

10 20 50 100

5
0

1
0
0

2
0
0

5
0
0

Processors

S
e
c
o
n
d
s Total

Compute

Figure 2. Parallel D-Infinity Contributing Area Timing for Boise River test dataset

(24856 x 24000 cells  2.4 GB). a) 8 processor PC, b) 128 processor cluster.

In the Pit Remove comparison the time taken by the serial ArcGIS implementation of

an equivalent Fill function on the 8 processor PC is also shown. On the 128 processor

cluster, total time is significantly more than compute time reflecting the cost of reads

and writes on this system underscoring the importance of architectures with fast file

systems for this class of problems. Both Pit Remove and Contributing Area algorithms

appear to be scalable out to about 50 processors with this architecture. This is the

point where partition stripe borders occupy about 1/200 of the domain for these data, a

56.0n~C 

03.0n~T 

95.0n~C 

63.0n~T 

proc. 48 to

n~C 93.0

proc. 48 to

n~T 18.0

69.0n~C 

44.0n~T 

a) b)

a) b)

factor likely to be close to the ratio of memory access versus network transfer speeds

for data being shared across partitions. These results show that, among other

considerations, parallel implementations of hydrologic analysis algorithms must

balance increases in execution speed with parallel overhead aspects such as network

latency and synchronization costs that are common to all parallel applications.

4. Conclusions

The results demonstrate that the processing times for hydrologic terrain analysis

algorithms can be significantly reduced by the use of multiple processor distributed

systems. The amount of improvement is dependent upon system architecture and the

dataset being evaluated. In an environment where multi-core desktop systems as well

as cluster-based systems are becoming more prevalent this approach provides an

effective means of increasing analysis capability for a large community of users.

Acknowledgements

This work was funded by the System Wide Water Resources Research Program of the

US Army Corps of Engineers.

References
L. Arge, J. Chase, P. Halpin, L. Toma, J. Vitter, D. Urban, and R. Wickremesinghe, 2003, Efficient flow

computation on massive grid terrain datasets. Geoinformatica, 7(4):283–313.

S. K. Kampf and S. J. Burges, (2007), "A framework for classifying and comparing distributed hillslope

and catchment hydrologic models," Water Resour. Res., 43,

http://dx.doi.org/10.1029/2006WR005370

National Research Council Committee on Floodplain Mapping Technologies, (2007), Elevation Data

For Floodplain Mapping, The National Academies Press, Washington, DC.

D. G. Tarboton, (1997), "A New Method for the Determination of Flow Directions and Contributing

Areas in Grid Digital Elevation Models," Water Resources Research, 33(2): 309-319.

D. G. Tarboton and M. E. Baker, (2008), "Towards an Algebra for Terrain-Based Flow Analysis," in

Representing, Modeling and Visualizing the Natural Environment: Innovations in GIS 13,

Edited by N. J. Mount, G. L. Harvey, P. Aplin and G. Priestnall, CRC Press, Florida, p.496.

D. G. Tarboton, K. A. T. Schreuders, D. W. Watson and M. E. Baker, (2009), "Generalized terrain-

based flow analysis of digital elevation models," 18th World IMACS Congress and

MODSIM09 International Congress on Modelling and Simulation, ed. R. S. Anderssen, R. D.

Braddock and L. T. H. Newham, Modelling and Simulation Society of Australia and New

Zealand and International Association for Mathematics and Computers in Simulation, July

2009, p.2000-2006, http://www.mssanz.org.au/modsim09/F4/tarboton_F4.pdf.

J. P. Wilson and J. C. Gallant, (2000), Terrain Analysis: Principles and Applications. John Wiley and

Sons, New York.

