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1. Introduction 

A Digital Elevation Model (DEM) represents land surface topography using a 

rectangular raster grid, where each raster cell contains a floating point value equivalent 

to the elevation of that geographic point above some base value (usually, sea level) 

(Wilson and Gallant, 2000). DEMs have become a vital component of the hydrologic 

modeling process and are used for a number of purposes including distributed 

hydrologic modelling (Kampf and Burges, 2007) and floodplain mapping (NRC, 

2007).  

A revolution in the ability to collect elevation data has created a drastic 

improvement in the quality and quantity of DEM data. Ground resolution of the raster 

cells has improved from 30-100 meter per raster cell 5-10 years ago to 1-5 meter 

resolutions today for much of the Earth’s land surface. This accuracy has increased the 

size of the DEMs used for hydrologic purposes. For instance, to represent the Provo 

River basin in central Utah, 1.73e
5
 hectares (673 mi

2
) at 90-meter posting intervals 

requires 4.7e
5
 raster cells; at 30-meter resolution, 4.2e

6
 cells; and at 10-meter 

resolution, 3.8e
7
 cells. Because of the increase in raster size, many of the analysis 

techniques used for coarser resolutions and smaller DEMs are prohibitively time 

consuming when being applied to high-resolution data.  

Although increases in computer processor speed and memory and disk availability 

have helped enable working with this large data there is a need to adapt hydrologic 

algorithms to exploit new parallel processing capability and architectural functionality. 

For example Arge et. al. (2002) examined ways to frame key hydrologic terrain 

analysis algorithms to take advantage of transparent parallel I/O systems to overcome 

some of the I/O bottlenecks that occur when processing large terrain datasets in single 

CPU environments. Arge et al. (2002) implemented single flow direction flow routing 

(including pit removal) and flow accumulation and showed that efficient algorithms 

designed to optimize the reading and writing of blocks of data between memory and 



disks based on system component properties can significantly improve processing 

times.    

This paper describes parallel algorithms that have been developed to enhance 

hydrologic terrain processing so that larger datasets can be more efficiently computed.  

By physically distributing the hydrologic processing for a single dataset among 

compute nodes in a cluster based system or even a multi core desktop computer, 

considerable speedup is achieved by simultaneous processing of different portions of 

the domain. On a cluster based system this approach also takes advantage of the large 

aggregate memory of all the compute nodes working together. Message Passing 

Interface (MPI) parallel implementations have been developed for pit removal, flow 

direction, and generalized flow accumulation methods within the Terrain Analysis 

Using Digital Elevation Models (TauDEM) package (Tarboton and Baker, 2008; 

Tarboton et al., 2009). 

2. Approach 

The parallel algorithms work by decomposing the domain into striped data partitions 

where each stripe is processed by a separate processor. This method also reduces the 

memory requirements of each processor so that larger size grids can be processed.  An 

input grid is divided horizontally into equal parts based on the number of processes, 

with any extra portion remaining being attached to the last partition. Our algorithm 

stores for each partition the one-cell border information in adjacent partitions and uses 

a dependency grid to track when these border cells have been evaluated in the adjacent 

partition and manage iterative swapping of this information using message passing so 

that meandering across stripes is properly handled. The overhead associated with this 

iteration, which is input data dependent, is one of the factors that contribute to the 

parallel algorithms scaling less efficiently than number of processors to the power -1.   

Many of the functions in TauDEM are based on the D-infinity (D∞) multiple flow 

direction model (Tarboton, 1997) that represents flow direction as a vector along the 

direction of steepest downward slope on eight triangular facets centered at each grid 

cell. Flow from a grid cell is shared between the two downslope grid cells closest to 

the vector flow angle based on angle proportioning. Contributing area, defined as the 

number of grid cells draining through each grid cell, is the simplest example of these 

functions, and is used to explain the approach. To calculate the contributing area of a 

cell i, all of the cells in the region that drain into i must first be calculated. A 

dependency grid that contains at each cell i the number of unevaluated immediate 

neighbours that drain into i is used to achieve this. If there are no neighbouring cells, n, 

that drain into i, that cell is considered ready for evaluation, so it is placed on the 

queue, allowing its contributing area to be calculated. If there is a neighbour that drains 

into i, the number of neighbours that drain into i is recorded in the dependency grid. 

This number is used later to determine when cell i will be ready to be calculated. Each 

process completes this phase in parallel with all other processes.  

Each process maintains a queue containing cells that are ready for evaluation and a 

grid filled with number of cell dependencies. After the queue has been initialized, each 

process begins popping cells off the queue and calculating each cell’s contributing 

area. Then the dependency grid at each downslope neighbour is decremented by one. If 

the dependency grid becomes zero, all upslope cells have been calculated and the grid 

cell is put on the queue. It is possible however that the grid cell may belong to an 

adjacent process. In this case, instead of decrementing the dependency grid by one, the 

dependency border is decremented.  Upon completion of process queues, 



communication between processes is performed to swap border dependency 

information. The procedure is iterated until all cells have been evaluated. 

3. Evaluation 

Parallel implementations of the Pit Remove and D Contributing Area functions were 

tested (Figures 1 and 2) on: (a) a dual quad-core Xeon E5405 2.0GHz PC with 16GB 

RAM (8 processors); and (b) a cluster of 16 diskless Dell SC1435 compute nodes, 

each with 2.0GHz dual quad-core AMD Opteron 2350 processors with 8GB RAM 

(128 processors total) controlled by a similar Dell SC1435 acting as the head node, and 

housing the file system. Each compute node has a dual-port gigabit network adapter, 

one of which is reserved for the network file system.  
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Figure 1.  Parallel Pit Remove timing for NEDB test dataset (14849 x 27174 cells  

1.6 GB). a) 8 processor PC, b) 128 processor cluster. 
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Figure 2.  Parallel D-Infinity Contributing Area Timing for Boise River test dataset 

(24856 x 24000 cells  2.4 GB).  a) 8 processor PC, b) 128 processor cluster. 

In the Pit Remove comparison the time taken by the serial ArcGIS implementation of 

an equivalent Fill function on the 8 processor PC is also shown.  On the 128 processor 

cluster, total time is significantly more than compute time reflecting the cost of reads 

and writes on this system underscoring the importance of architectures with fast file 

systems for this class of problems.  Both Pit Remove and Contributing Area algorithms 

appear to be scalable out to about 50 processors with this architecture.  This is the 

point where partition stripe borders occupy about 1/200 of the domain for these data, a 
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factor likely to be close to the ratio of memory access versus network transfer speeds 

for data being shared across partitions. These results show that, among other 

considerations, parallel implementations of hydrologic analysis algorithms must 

balance increases in execution speed with parallel overhead aspects such as network 

latency and synchronization costs that are common to all parallel applications. 

4. Conclusions 

The results demonstrate that the processing times for hydrologic terrain analysis 

algorithms can be significantly reduced by the use of multiple processor distributed 

systems.  The amount of improvement is dependent upon system architecture and the 

dataset being evaluated.  In an environment where multi-core desktop systems as well 

as cluster-based systems are becoming more prevalent this approach provides an 

effective means of increasing analysis capability for a large community of users.  
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