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1. Introduction 
To date GIS-based conflation research has primarily been concerned with specific 
algorithms and tools for performing conflation on specific types of datasets.  Most of 
these techniques focus on matching the geometry of geospatial features represented as 
points, polylines, and polygons.  More recently the matching of the semantics of 
geospatial features has been identified as a key component of the conflation problem.  
In addition, conflation was conceived in terms of traditional GIS, but with the advent 
of neogeography, and in particular web-based maps with community-generated 
content, the representation of geospatial features on the earth has become increasingly 
heterogeneous in terms of geometry, semantics, data provenance, and error 
(Goodchild, 2007).  In light of these complexities we present a general framework for 
conflation that aims to handle this diversity of representation. 

To further motivate the need for a general framework we propose that the conflation 
operation is an important part of answering the question “Where am I?”  The “Where 
am I?” question is a perennial favorite of spatial cognition, navigation, and location 
services researchers.  For our purposes we take a very specific interpretation of this 
question.  Namely, the answer to this question is the identification of one’s location as 
a point on the Earth.  Any location on the Earth can be represented by a set of 
properties.  We can identify our location if and only if this set of properties used to 
represent our location is unique.  In the case that we have the latitude/longitude 
property or a unique identifier of a discrete object at our location, such as an address, 
we can establish uniqueness of our location.  In the absence of these singleton sets we 
can only answer this question by assembling a set of properties that are unique to our 
location.  As these properties will often come from separate information sources a 
conflation operation is required.  Given that conflation merges representations based 
on similarity thresholds and that errors exist in all geographic data sets, there exists a 
degree of uncertainty as to the uniqueness of our location identified from conflated 
data.  We make no claims as to sources of the representations being conflated and in 
fact as to whether they are internal mental representations or external representations 
stored in an information system.  

For an example of the “Where am I?” question take the following natural language 
description of a person’s location that may have been sourced from a number of 
different places (see figure 1 for a corresponding map): 

 
I am in Southern California standing on a two-lane road facing north.  Directly 
behind me is a parking lot about 100 meters square and further back are a 
number of buildings.  Directly in front of me I see a small airport and behind 
that a town and a mountain range rising above it. A highway intersects the 
town.  I know the ocean is south of me.  

 



Here we have a number of geospatial feature types (e.g., buildings, airport, mountains), 
topological and spatial relationships (e.g., intersects, south of), attributes (e.g., two-
lane), and geometry (100 m2), which can all be used to uniquely identify the location 
of the questioner.   

Although conflation research has focused on the geometric representation of the 
features, this scenario illustrates that for unstructured and heterogeneous data both 
geometry and semantics must be considered.  Such unstructured geographic data is 
ubiquitous.  For example, many neogeographic data sources, such as Geonames1, 
define the semantics of feature type terms using natural language descriptions. 
Furthermore, an analogy can be drawn between the distortion in a person’s (or 
ontology’s) representation of space and location (including both geometry and 
semantics) and the geometric distortion in GIS data resulting from different 
measurement techniques.  
 

 

Figure 1. Map of location in scenario. 

2. Geospatial Feature 
Every geospatial feature on Earth can be represented by a 4-tuple 

€ 

G,F,A,T  where:  
 

€ 

G: Geometry  

€ 

F : Feature type  

€ 

A : Set of attributes  

                                                 
1 http://www.geonames.org/ 



€ 

T : Set of topological relationships to other features  
 

Arguably, 

€ 

F , 

€ 

A , and 

€ 

T  could all be subsumed under the label semantics (and perhaps 
even 

€ 

G) (Kuhn 2003) but we find it helpful to make this separation because 1) feature 
types are especially salient in our conceptualizations of geospatial features (Frank 
2003) and 2) topology is unique from other attributes in that it encodes relationships 
with other features.  One might be tempted to also include a unique identifier for each 
feature along the lines of Ordnance Survey’s Topographic Identifiers (TOIDs)2, but 
epistemologically this kind of assignment is suspect.  For example, is Lake Tahoe the 
same geospatial entity that it was before European settlers named it as such?  This 
question also points to the fact that all geospatial features are dynamic on some time 
scale.  Thus, we can designate different representations for the same feature at different 
points or intervals in time.  For example, the geometric representation of the Aral Sea 
today looks very different from what it did in 1960.3 

Every location can be generalized as an area containing some collection of the 
above tuples.  A characteristic of the conflation operation is that it is invariant based on 
the extent of the area examined.  In other words our proposed framework is designed 
to be universally applicable regardless of whether one is conflating feature sets with 
large or small footprints on the Earth. 

 
3. Conflation is Similarity + Error Estimation 

Given two collections of geospatial features, the process of conflating them generates a 
new collection of features along with estimations of the error propagated.  The key 
component of any conflation algorithm is measurement of the similarity between 
features (Saalfeld 1988).  We define feature similarity as a linear weighted sum of 
semantic and geometric similarities:  
 

€ 

ω ij =αSij + βDij  (1) 
 

where 

€ 

S  is semantic distance and 

€ 

D is geometric distance (distance and similarity are 
inversely related), and 

€ 

i  and 

€ 

j  are feature indices in the source datasets.  The weights 

€ 

α  and 

€ 

β  provide a way to describe a context for conflation.  We make the claim that 
in most cases geometry trumps semantics, because regardless of semantic similarity if 
two features are far apart in space they should never be conflated.  Although semantic 
and geometric similarity measures are incommensurable, when they are both 
normalized to a [0..1] scale this will tend to result in 

€ 

β >>α .  However, there may be 
exceptions, especially when conflating highly unstructured data such as found in the 
“Where am I?” scenario described in the introduction.    

Expanding the semantic part of equation 1 to differentiate feature type, attributes, 
and topology we get:  

 

€ 

ω ij =α f Sf ij +αaSaij +α tStij + βDij  (2) 
 

                                                 
2 http://www.ordnancesurvey.co.uk/oswebsite/freefun/geofacts/geo1201.html 
3 In fact, it might be represented as three different features today: the North Aral Sea 
and western and eastern South Aral Sea. 



Note, in most cases the distance measures of the semantic components will be strongly 
correlated, which should be considered when assigning the 

€ 

α  weights. 

3.1 Geometric and Semantic Distortion 
Uncertainty in GIS data may come from many sources. The real world is infinitely 
complex with lots of information; therefore generalization or simplification introduces 
uncertainty in the creation of a GIS database. Different people may adopt different 
conceptualization schemes when they create datasets about the same features. In 
addition, uncertainty also depends on the measurement method and the scale of 
measurement. Finally, uncertainty may be propagated in data processing and analysis 
after data are captured. Therefore, one of the key research questions in conflation is 
how to identify the same features in spite of inherent uncertainty in various geospatial 
databases.  Analogously, when answering the question “Where am I?” humans conflate 
information presented on a map with incomplete and imperfect information in their 
internal representations along with implicit knowledge of how well they trust their own 
information to generate a better understanding of their location. 

Semantic similarity measurement is an active research topic in GIScience, and 
several techniques have been developed (Schwering 2008).  Every dataset either 
commits to an implicit ontology that exists in the head(s) of the schema designer(s) or 
an explicit ontology defined in some degree of formalization.  Just as two 
representations of a feature will be geometrically distorted, they will also be 
semantically distorted by the ontology.  In some cases there is no ground-truth to 
identify which of the features is more distorted from reality; there is simply a 
difference in definition.  An example of this is the Río de la Plata in South America, 
which may or may not be classified as a river.  However, there are cases where 
something close to ground-truth can be identified.  For example, if the land-use of an 
area is represented as farmland in one database, but a raster image of the same area 
with the same timestamp shows concrete everywhere then it is a fair assessment to say 
that the first representation is highly semantically distorted from reality.  In general, 
two representations will be semantically distorted from each other, quantified in terms 
of the results of semantic similarity measurement.  

3.2 Temporal Effects on Similarity Measurement 
The role that time plays in conflation is a largely unexamined problem.  Even under 
“perfect” measurement conditions, all of the components, 

€ 

G,F,A,T , of a 
representation will change over time.  The rate of change, which we designate the 
temporal malleability, of a geospatial representation varies considerably depending on 
what is being represented.  However, the similarity threshold required to identify two 
representations as referring to the same feature will always be indirectly related to the 
magnitude of their temporal difference (i.e., representations of the same feature will 
become less similar the further they are spread over time).  Historical GIS is one 
application where temporal malleability is of particular importance.  Furthermore, 
there is the issue that features can come into existence, cease to exist, join together, or 
separate into multiple features at different moments in time (Hornsby and Egenhofer 
2000).  

4. Conclusion 
Today geographic data is not only found in GIS databases but also on the Web in a 
variety of formats.  A framework for conflation must be sufficiently general to be 
applicable to these heterogeneous data.  Here we presented a framework of conflation 



that defines geospatial features as 4-tuples and the process of conflation as a linear 
combination of geometric and semantic similarity measures with corresponding error 
estimation.  This lays the groundwork for developing models that incorporate both 
geometric and semantic distortion for matching heterogeneous data.  We also 
examined issues related to temporality in conflation.  An important next step is the 
formalization of semantic distortion and how it relates to existing models of geometric 
distortion.  In addition, more work needs to be done developing adequate models for 
error estimation and recording for both geometric and semantic matching. 
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