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1. Introduction 

Seabed mapping has a variety of applications, such as environmental research, marine 

and coastal resource management, oil/gas exploration etc. Multi-Beam Echosounder 

(MBES) is one of the most commonly used instruments for seabed surveys. This is a 

recent collaboration between StratAG (Strategic Research in Advanced 

Geotechnologies) and the Geological Survey of Ireland (GSI). GSI and the Irish 

Marine Institute (MI) have recently conducted extensive surveys in the seaboard of 

Ireland and the result of the survey is a massive MBES backscatter (scattering of sound 

waves) database. 

The project described in this paper consists of two phases: 

 In phase-1, spatial and statistical analysis was conducted to determine the 

integrability of the datasets (Caughey et al. 2010). 

 Phase-2 consists of finding the best classification methodology for the data. 

This is work in progress, which we describe in this abstract. 

The aim of this project is to develop a new methodology that will improve the seabed 

mapping process from deep water MBES data for GSI and potentially other marine 

research institutes.  

2. Seabed type Classification from MBES Data 

2.1 MBES: working principle and current approaches 

The MBES systems transmit and receive an array of acoustic beams with individual 

small widths across the axis of the ship. The intersection of the transmit pulse and the 

receive-beams results in many simultaneous measurements across a wide swath. These 

measurements are then interpolated into an acoustic image (Augustin et al. 1994, 

Lurton 2002, Mayer 2006). 

Seabed classification is achieved by the analysis of backscatter amplitudes. This is a 

complex process due to the inhomogeneity of seafloor as well as the sheer volume of 

the data (Arescon Ltd. 2001, Xinghua and Yongqi 2004). Automated classification, 

based on the statistical nature of the acoustic image, is currently the logical and 

common choice to achieve statistically valid and objective segmentations (Hellequin 

1998, Hellequin et al. 2003, Cutter et al. 2003, McGonigle et al. 2009). Our data was 



generated using Multiview™, which uses a similar approach (Preston et al. 2001, 

Preston et al. 2004, McGonigle 2009). 

A set of features, called Full Feature Vectors (FFVs), are generated using 

Multiview™ from the backscatter amplitudes (Collins and Preston 2002, Preston 

2009). The result is a large matrix containing all the features extracted from the image. 

This matrix represents the FFV space, where each feature can be regarded as one new 

dimension/attribute. 

2.2 Data Description 

The deep sea survey was carried out over a period of three years (2000-2002) in the 

western seaboard of Ireland using three different pulse lengths (2000ms, 5000ms, and 

15000ms) depending on the depth. Majority of the survey data comes from the survey 

year 2001 using 15000ms pulse length and this data set was used for the analysis and 

results presented in this paper. The study area extends between 57.4
0
N to 46.7

0
N and 

from 24.8
0 

W to 9.25
0 

W (Figure 1).  

 
Figure 1. Map of data acquisition in zone-3 of the GSI/MI survey. 

 

Each survey pass included five FFVs: Quantile measure (Q), ‘Pace’ textural feature 

(P), ‘contrast’ feature (C), mean (M), and standard deviation (S). The five features 

chosen for our analyses were pre-determined by GSI.   

3. Seabed type mapping from deep water MBES data 

3.1 Data integration based on spatial and statistical analysis 

Datasets of pulse length 2000 was removed from the analysis after initial processing. It 

covered a small proportion of the survey area, consisted of hugely varied data and was 

considered unreliable in aspects concerning its means and consistency of acquisition.  

A range of comparative analyses to assess the feasibility of joining the data were 

carried out on six overlapping spatially diverse data subsets from pulse lengths 5000 

and 15000. These overlaps were not confined to one distinct spatial region (Figure 2).  



 
Figure 2. Overlap areas (e.g. OL4, OL5…) between different years and pulse lengths.  

 

We performed a number of statistical tests (summary statistics, hypothesis testing, 

weighted/un-weighted mean errors, robust and weighted correlations etc.) on these 

overlaps. It was evident from these results (Caughey et al. 2010) that we cannot 

reliably join the datasets together and decided to keep them separate for phase-2.  

 
3.2 Correlation analysis 
In the next step we examined, through correlation analysis, if there exist any 

relationships among the FFVs. Global and local correlation analyses were carried out 

on the five backscatter features: Q, P, C, M, S; and the single bathymetry variable: 

‘Max_Slope’.  From the global correlation matrices (Figure 3), it was evident that there 

exists a clear relationship between P and C. Using exponential regression, a negative 

exponent on C was estimated at -0.90. This was used to calculate a new feature 

variable C1 (i.e. C1 = C
-0.90

), and regenerate a revised set of the global correlation 

matrices (Figure 4).  As expected, P related fairly linearly to C1. 

Next, the nature of the relationship between M and Q suggested that there may exist 

some composite measure for M and Q that may replace or supplement (one or both of) 

M and Q.  In the coming weeks, we intend to investigate this by examining a 

prediction error variable: MQ1 = M-M*; where M* is predicted using M and Q. This 

analysis is currently ongoing. 

 



  
Figure 3. Global correlation matrix. Figure 4. Revised global correlation matrix 

with C1. 

 

These results will form the basis of selection of an appropriate subset of FFVs for 

subsequent classification. 

 

3.3 Automatic classification and evaluation of classification quality 
The next focus was to develop most suitable techniques for automatic classification of 

these datasets and combining classification results spatially. We are currently 

investigating three methods of clustering on the data and look for consistency in the 

clusters across methods.  

A combination of principal component analysis (PCA) and k-means clustering, 

commonly used in acoustic seabed classification, will be attempted (Atallah and Smith 

2004, Preston 2009). We will also test two more recent methods, Quality Threshold 

(QT) clustering (Heyer et al. 1999) and Spectral Clustering (SC) (Shi and Malik 2000, 

Ng et al. 2002, Luxburg 2007, Chen et al. 2010). This is a work-in progress and this 

paper focuses on the initial results obtained from SC and QT clustering on the dataset. 

With QT clustering, unlike k-means, users do not need to specify the number of 

clusters required. Rather, they choose a maximum diameter for clusters, called QT 

distance. QT will only return clusters that pass a user-defined quality threshold. With 

no requirement for random cluster centroid initialisations, QT clustering always returns 

the same result for the same dataset and QT distance specified. In this paper, Euclidean 

distance measure is used as it is one of the most commonly employed. 

SC method is a relatively new method which exploits pair wise similarities of data 

instances and is recently shown to be more effective than traditional methods such as 

k-means (Shi and Malik 2000, Dhillon 2001, Xu et al. 2003, Luxburg 2007, Chen et al. 

2010). 

Spectral clustering is graph-based clustering. It calculates a similarity matrix S=[sij] 

between data points in attribute space, which represents the adjacency matrix of the 

similarity graph G=(V,E), where V is the set of all data points x1,…,xn. Two vertices in 

V, xi and xj, are connected if similarity sij between them is larger than a certain 

threshold – this means that the original similarity matrix linking all possible pairs of 

vertices is, thereby made sparse by considering most significant similarities. The 

similarity graph is then partitioned into k groups, so that the edges between groups 

have low weights and the edges within a group have high weights. This is done by 

calculating the Laplacian of the sparse similarity matrix and clustering its eigenspace 



using k-means clustering – the name spectral clustering comes from this (Luxburg 

2007, Chen et al. 2010). The advantage of this method is that the clusters are based on 

local similarity in the attribute space and the method is therefore both faster as well as 

able to detect clusters that simple k-means would not recognise (e.g. non-convex 

clusters). 

4. Results 

To reduce the computational time during initial investigations, decimation is 

performed prior to clustering to reduce the size of data by a factor of 10 to around 

100,000 samples. The use of both PCA and k-means failed to properly produce 

meaningful clusters, partly due to insufficient between-cluster distance in the principal 

component subspace. Nonetheless, it appears that the principal subspace can identify a 

number of outliers that is located outside the main sample ‘cloud’ (Figure 5). 

  

 
Figure 5. The MBES feature set projected on the first two principal components. 

 

Figure 6 shows the results obtained from QT and SC. Here the attributes Q, P, C, M, 

and S are considered. For SC, in order to reduce computation time, five random 

samples of 10,000 records were generated from the dataset, normalized, and then SC 

was run on each of them. The results were consistent across samples. Figure 6 shows 

the results for 4, 6, and 8 clusters obtained from the first random sample. 

For QT, the computational load is more involved. The dataset is divided into 100 

subsets by random permutation. This is followed by 100 separate QT clustering and 

the results combined. Monte Carlo simulation is carried out 10 times and the final label 

for each sample is determined by majority voting. Since QT virtually always returns 

the cluster with decreasing number of samples, the labelling scheme are consistent, 

both within each data subset and among each Monte Carlo simulation. The QT 

distances chosen are 3, 2 and 1 which return 12, 20 and 40 clusters, respectively. They 

were then labelled into 4, 6, and 8 clusters for QT distances 3, 2 and 1 (Figure 6).  



 

 

 
Figure 6. Spectral (SC) (using sparse similarity matrix) and Quality Threshold (QT) 

(using Euclidean distance) clustering results with 4 (6: a, b), 6 (6: c, d), and 8 (6: e, f) 

clusters. 

 

From the figures, it seems that misclassification increases with the increased number of 

classes. In the deep waters, possibilities of variation in the geological features of the 

sea floor over a short distance are reasonably low. Therefore, it is expected that the 

datasets would have fewer number of distinct clusters as opposed to the land-cover 

above sea level. SC methods seemed to have performed well in defining the clusters 

but this will need to be further verified, while QT allows more robust detection of 

outliers. These preliminary results also indicate that the number of clusters should be 

limited to six or below. The labels returned by both methods have clear spatial 

correlations when compared like-to-like. The final number of classes will be decided 

upon after expert consultation. 

 



5. Conclusions 

In the coming weeks, we plan to use the completed correlation results (section 3.2) to 

reduce dimensionality. We will run QT and SC on different combinations of FFVs to 

obtain the best possible clustering as well as test the consistency of the clustering 

methods. The geological features (rocks, sediments, etc) corresponding to each cluster 

will then be determined by comparing the results, using expert knowledge, and 

comparison to results from other surveys.  

The combined methodology of feature correlation and classification will undergo 

expert evaluation against ground truth information or existing seabed maps. Should 

this new methodology withstand the evaluation tests; it would be a useful new tool 

available to GSI and other marine institutes.  
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