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1. Introduction 

Geometric reasoning in vector based geographic information systems (GIS) is based 

on Euclidean geometry. Euclid’s first postulate, saying that the line determined by two 

points is unique, makes geometric constructions unambiguous, and, e.g., allows for 

specifying line features and polygons by tupels of points. It relies on the assumption 

that the location of a point can be unambiguously and accurately described by a 

coordinate pair. In contrast to this, the geographic location of a point in space can not 

be exactly determined, but is subject to positional uncertainty (Goodchild, 2000). One 

way to establish a uniqueness property for points and lines with positional uncertainty 

in analogy to Euclid’s first postulate is to introduce fuzzy equality predicates 

measuring a degree of equality of points and lines with positional uncertainty, 

respectively (Wilke 2009). This abstract focuses on equality of lines with uncertainty 

in location, and derives a list of four requirements to such an equality predicate. We 

focus on the simplest form of positional uncertainty, namely on location constraints: In 

this case, the true location of a point or a line is delineated by one or several regions in 

a coordinate space, and no distribution or weighting of the coordinate points within 

that regions is given. For many practical cases, assuming a single simply connected 

and regular constraining region is sufficient. We define extended points (extended 

lines) to be points (lines) whose exact location is unknown, and whose set of possible 

locations is specified by a simply connected regular subset of a coordinate space 

(parameter space). We interpret the incidence relation (on-relation) between extended 

points and extended lines by the subset relation of the underlying coordinate space.   

2. Related Work 

The topic of consistent geometric reasoning with points and lines that have positional 

uncertainty is a longstanding problem in vector based GIS. Some of the oldest 

references go back to Perkal (1966), Pullar (1991), or Chrisman, Dougenik and White 

(1992), introducing the concept of epsilon tolerance and fuzzy tolerance into geometric 

reasoning. Most of the more recent contributions, e.g. Leung, Ma and Goodchild 

(2004) or Heuel (2004), focus on positional uncertainty that stems from stochastic 

variability. Here, it is common to assume a Gaussian probability density function with 

unique mean to describe the uncertainty in position. In contrast to these approaches, 

the present work aims at integrating the concept of positional tolerance into the 

axiomatic fundament of geometry. As a first step this abstract addresses the 

formalization of the most fundamental axiom of all classical geometries, namely 

Euclid’s first postulate, for extended points and lines. Adopting an axiomatic approach 

has the advantage that consistency issues can be investigated with the tools of 

mathematical logic.  

 



 

3. Requirements to an equality relation of extended lines 

In the following subchapters 3.1 - 3.6 we derive a list of four requirements to an 

equality relation between extended lines that has to be taken into account when 

formalizing Euclid’s first postulate for extended primitives. 

3.1 Equality of extended lines is graduated 

Figure 1 illustrates that Euclid’s first postulate “The line determined by two points is 

unique” does not apply for extended points and extended lines: If two distinct 

extended points ,P Q  lie on the extended lines 1L  and 2L , 1L  and 2L  are not 

necessarily equal.  
 

  
 

Figure 1. Two extended points do not uniquely determine an extended line. 

 

Yet, 1L  and 2L  are in general “closer together”, i.e. “more equal”, than arbitrary 

extended lines that have only one or no extended point in common. This fact can be 

modeled by an equality relation that allows not only Boolean values, but values in the 

interval [0,1] . 

The standard way to model graduated equality relations, or, more generally, 

equivalence relations, is to use fuzzy equivalence relations (Hajek 1998). A fuzzy 

equivalence relation is a fuzzy relation 2: [0,1]eq D   on a domain D  that is 

reflexive, symmetric and transitive:  

 ( , ) 1eq x x   (1) 

 ( , ) ( , )eq x y eq y x  (2) 

 ( , ) ( , ) ( , ),eq x y eq y z eq x z   (3) 

where   denotes a fuzzy logical AND operator, called T-norm, and   replaces the 

implication operator
1
. An example of a prominent T-norm is the Łukasiewicz T-norm, 

which we denote by  . It is defined by 

  2:[0,1] [0,1],    max 1,0x y x y      . (4) 

3.2 Equality of extended lines is not transitive 

DeCoeck and Kerre (DeCoeck and Kerre 2003) pointed out that some spatial equality 

relations are not transitive, and thus cannot be modeled by fuzzy equivalence relations. 

A typical example of a non-transitive spatial equality relation is generated by 

measurement with limited accuracy: Two points p  and q  of the underlying coordinate 

space are indiscernible, if their distance lies below a threshold c . The relation 
c

  of 

indiscernibility is not transitive (Figure 2).   

 ,   ,   
cc c

p q q r p   r . (5) 

                                                 
1
   1  iff  a ba b    (Hajek 1998) 



 
 

Figure 2. p  and q  are indiscernible, q  and r  are indiscernible, but p  and r  are 

discernible. 

 

This phenomenon is commonly referred to as Poincaré Paradox (Gerla 2008). As can 

be seen in Figure 2, the relation 
c

  associates with each coordinate point p  a region of 

indiscernibility P , which can be interpreted as a location constraint to the unknown 

true location of the coordinate point p . This example shows that location constraints 

are susceptible to the Poincaré Paradox and that fuzzy equivalence relations are not 

suitable for modeling graduated equality in this context. 

Instead, tolerance relations are good candidates: A (crisp or fuzzy) tolerance 

relation   is a (crisp or fuzzy) relation that is reflexive and symmetric, but not 

necessarily transitive. It associates with each exact coordinate point p  a set P  of 

points that are not discernible from p  w.r.t.  . If the set P  is simply connected and 

regular, it can be interpreted as an extended point, and   can be interpreted as a 

graduated equality relation between extended points. Due to the missing transitivity 

property regions of indiscernibility do not form disjoint equivalence classes, but may 

overlap. This is consistent with the fact that regions defined by location constraints 

may overlap. 

3.3 Equality of extended lines is not non-transitive 

As pointed out in the last subchapter, the transitivity property of fuzzy equivalence 

relations is too restrictive for our purpose. In the following we will see that tolerance 

relations are too broad for our purpose: they do not provide enough information to 

relate the two lines 1L  and 2L  of Figure 1 by a graduated equality predicate. 

Since we defined extended points P  and Q  as location constraints to exact 

coordinate points p  and q , respectively, the pair ( , )P Q  can be interpreted as a 

location constraint to the unique exact line determined by p  and q . In other words, the 

extended lines 1L  and 2L  are related via the extended line generated by ( , )P Q . 

Looking at the axioms (1)-(3) of fuzzy equivalence relations, we see that the axiom of 

transitivity (3) is the only tool for relating two objects via a third. Dropping it deprives 

us of any means to derive a graduated equality value for 1L  and 2L .  

So far, we found three requirements for a graduated equality relation between 

extended lines: It should be 1. graduated, 2. not transitive, and 3. not non-transitive. In 

a Boolean calculus, requirements 2 and 3 would produce a contradiction. In a fuzzy 

logical calculus, this issue can be resolved by graduating the transitivity property.  



3.4 Equality of extended lines is weakly transitive 

G. Gerla (2008) shows that for modeling the Poincaré paradox in a graduated context, 

transitivity need not be dropped completely, but may instead be replaced with a weaker 

form:  

 ( , ) ( , ) ( ) ( , )eq x y eq y z dis y eq x z   . (6) 

Here ( ) [0,1]dis y   is a lower-bound measure for the degree of transitivity that is 

permitted by y . We call a pair  

  2: [0,1],   : [0,1]eq D dis D   (7) 

satisfying reflexivity (1), symmetry (2) and weak transitivity (6) an approximate fuzzy 

 -equivalence relation
2
.  

3.5 Equality of extended lines is inverse to their distance 

In a spatial context, it is reasonable to require a graduated equality relation (often 

called similarity measure) to be inverse to a distance measure. Gerla (2008) shows that 

this requirement can be maintained for approximate fuzzy  -equivalence relations in a 

slightly adapted form: If the Łukasiewicz T-norm   is chosen for  , eq  and dis can 

be represented by 

  ( , ) max 1 ( , ),0 ,eq x y x y   (8) 

  ( ) max 1 ( ),0dis y s y  . (9) 

Here :s D   is a size measure, and 2: D   is a distance measure for 

extended sets: The pair ( , )s  is called a pointless pseudo-metric, and satisfies the 

following axioms: 

 ( , ) 1,x x   (10) 

 ( , ) ( , ),x y y x   (11) 

 ( , ) ( , ) ( ) ( , ).x y y z s y x z      (12) 

The inequality (12) is a weak form of the triangle inequality. It corresponds to the 

weak transitivity  

 ( , ) ( , ) ( ) ( , )eq x y eq y z dis y eq x z    (13) 

 

of the approximate fuzzy  -equivalence relation eq . In case the size of the domain 

D  is normalized to 1, equations (8) and (9) simplify to 

 

 ( , ) 1 ( , ),eq x y x y   (14) 

 ( ) 1 ( ).dis y s y   (15) 

3.6 Equality of extended lines has granularity 

Two distinct exact coordinate points p  and q  determine a unique line, even if they are 

arbitrarily close to one another. For two distinct extended points P  and Q  this is not 

necessarily the case: if P  and Q  are “very close” to one another and the extended line 

1L  is “too broad”, then it may happen that P  and Q  behave like one single point with 

                                                 
2
 Gerla uses the name approximate similarity relation. In the present abstract we use the name 

approximate fuzzy equivalence relations to stress the connection with equality relations. Since the terms 

fuzzy equivalence and similarity are used interchangeably in the fuzzy logic literature, this should not 

cause confusion. 



respect to 1L  (Figure 3): Even though P  and Q  lie on 1L , they do not specify any 

directional constraint for 1L . Consequently, the graduated equality value 1 2( , )eq L L  

may become arbitrarily small (i.e. zero). 

As a consequence, an additional granularity factor gr  must be added to 1 2( , )eq L L  

for each of the involved extended lines 1L  and 2L . The granularity factor 

1[ ( ),  ( , )]gr s L P Q  for 1L  depends on two parameters: the size 1( )s L  of 1L , and the 

distance ( , )P Q  of  P  and Q .  

 

 
 

Figure 3. P  and Q  behave like one single point w.r.t. 1L . 

4. Conclusions 

We discussed Euclid’s first postulate “The line determined by two points is unique” in 

the context of positional uncertainty of points and lines. With regard to the goal of 

establishing an analogous property for extended points and lines, we proposed a list of 

four requirements to an equality relation between extended lines: Such a relation 

should be 1. graduated, 2.weakly transitive, 3. inverse to distance, and 4. incorporate 

granularity. A full paper describing a formalization of Euclid’s first postulate in fuzzy 

Łukasiewicz logic, which incorporates these requirements, is currently under 

preparation. 
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