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1. Introduction 

Due to the rapid development of a series of Web 2.0 technologies, the past five years 

have witnessed an explosive growth of geocoded user-generated contents on the Web – 

popularly known as the Volunteered Geographic Information (VGI) (Goodchild 2007; 

Elwood 2008).  The wikification of GIScience in general and the growth of VGI in 

particular via cloud computing, open-source, and crowd-sourcing will transform 

GIScience in many fundamental ways in the years ahead (Sui 2008). 

 

This paper develops a new approach of using VGI for flu surveillance by integrating 

GIS with a Hidden Markov Model (HMM).  The particular type of VGI in this paper is 

Internet search.  Disease related keyword search comprises both location information 

(in the form of IP address or geotags) and attribute information (in terms of disease 

related terms). Previous studies have exploited HMM in terms of monitoring disease 

surveillance data (Le Strat and Carrat 1999; Watkins, Eagleson et al. 2009) but data 

from Web is not discussed. Other studies explored the possibility of incorporating 

search data but data spikes problem is not solved (Carneiro and Mylonakis, 2009).  

The novelty of this paper lies in: first, word similarity analysis is introduced which was 

widely used by linguistics to process natural language but rarely borrowed by 

geographers; second, we implemented a HMM based on continuous real valued data 

and demonstrated its advantages and limitations.  

 

Researchers from Google asserted that the search keywords they chose can predict ILI 

(Influenza-Like Illness)  two weeks in advance (Ginsberg, Mohebbi et al. 2009). 

However, we do not want to simply accept this conclusion. Instead, we seek to extract 

new measures from sensor data that give different predictive powers. To achieve this 

goal, we analyzed the correlation between variables by testing on different steps of 

lagging. Initial results showed that a semantic combination of key words, rather than 

using key words directly, could extract sensors that correlate with ILI more 

significantly. 

2. Data 

2.1 Sensor data 

Google keyword search is used to help us find out all flu related keywords. In total, 

800 flu related search phrases are found and 190 significant key words are extracted. 

NLTK (Natural Language Toolkit), a python library is used to calculate the similarity 

between keywords (Loper and Bird 2002). Words with high semantic similarity (0.9) 
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are grouped into meaningful categories. Finally, four categories (Prevention, Symptom, 

Treatment, Duration) are chosen to build our model. The search volume of each 

category is used as one type of sensor data. An example of retrieving sensor Symptom 

from Google trend using a customized query expression is shown in Table 1.  

 

Table1. Query expression for retrieving sensor Symptom. 

 

Keyword 

Category 

Query expression 

Symptom (flu|influenza|cold|colds 

cough|symptom|symptoms|diarrhea) - 

(swine|bird|avian|dog|dog|dogs) 

 

2.2 Flu status data 

Flu status data were obtained from the U.S. Centers for Disease Control & Prevention 

(CDC). It has 137 records spanning from week 40, 2004 to week 20, 2008.   

3. Method 

We have argued that search volumes can be “geocoded” to real world locations based 

on the IP address. We aim to build prediction model for each county that uses Google 

search engine but in this abstract only the US case is studied for domostration purpose. 

HMM is implemented as a probabilistic reasoning model to calculate conditional 

probability of flu status based on sensor data. Flu status is hidden in the sense that the 

number of infected population at the time of observation is always unknown; however, 

the consequence of the hidden status can be observed through the sensors, the volume 

of keyword search. 

 

The simplest Markov chain assumes that current hidden status depends only on one 

previous status. This is called a first order Hidden Markov Model which is illustrated 

in Figure 1. X is flu status and E is sensor evidence.  

X1 X2 X3

E1 E2 E3

 
 

Figure 1. First Order Hidden Markov Model 

3.1 Transition Model 

The transition model in this first order HMM case is formulated as equation (1). 

             (1) 

3.2 Sensor Model 

The sensor model based on a single sensor and flu status are given as equation (2). 

            (2) 

 



 

3.3 Probabilistic Reasoning 

Before we build prediction model, it is necessary to learn following probability 

distributions: Prior distribution P(xt) and P(et), transitional distribution P(xt|xt-1) and 

sensor distribution P(et|xt).  

3.3.1 Prior distribution: 

                   (3) 

             (4) 

These two prior distributions belong to Gaussian distribution. In equation (3) and (4), 

 is the mean of the variable,  is the standard deviation,  is the probability density 

function. 

 

For real valued data like ILI and search volumes, we introduce linear Gaussian model 

to calculate probability distribution.  

 

3.3.2 Transitional distribution: 

         (5) 

In equation (5), the mean of current flu status  can be presented as a linear function 

of its previous status .  

 

3.3.3 Sensor distribution: 

           (6) 

Similar to equation (5), in equation (6) the mean of  is presented as a linear function 

of . 

 

3.3.4 Prediction model 

Two prediction models are implemented. They are based on one evidence (equation (7)) 

and two consecutive evidences (equation (8)) respectively. 

                                                                                   (7) 

             (8) 

4. Preliminary Results 

Our preliminary results show that one step lagging is optimal for describing the 

autocorrelation of flu status (See Table 2). It was also found that different steps of 

lagging of flu status correlate differently with sensor variables. Although one step 

lagging is optimal for most sensors except prevention, it also shows some sensor 

variables correlated significantly with ILI even with two steps of lagging. This makes 

it possible to predict flu at an earlier stage based on these sensor variables. The results 

of lagging analysis are summarized in Table 3. 

 

 



 

Table 2. Autocorrelation of flu status variable. 

 

Lagged  flu status Flu status Lag R P 

ILI ILI 1 0.97 0.00 

 

Table 3. Comparison of different steps of lagging between flu status and search sensors. 

 

Lagged flu status Sensor Lag R P 

ILI prevention 16 0.77 0.00 

ILI symptom 1 0.94 0.00 

ILI symptom 2 0.90 0.00 

ILI treatment 1 0.95 0.00 

ILI treatment 2 0.90 0.00 

ILI duration 1 0.85 0.00 

 

We test our model by using symptom sensor from week 1, 2008 to week 20, 2008. ILI 

baseline 2 is used as the threshold of alarming for high flu activity. Probability of ILI 

exceeding the threshold is calculated based on prediction models (7) and (8). 

Table 4 shows the prediction result. It can be seen that probability of ILI exceeding 

the threshold increases with the increase of sensor value. We achieved a 100% correct 

alarming rate on our test data. Given more sensors, prediction accuracy can be 

improved as illustrated by the probability values in Table 4. Figure 2 is a graphical 

representation of results in Table 4. 

 

Table 4. Prediction model results. 

 

Week Symptom ILI P(ILI>2|e1) P(ILI>2|e1,e2) Alarm? 

1 0.88 2.447 0.631443   

2 0.9 2.307 0.555164 0.664520898 Yes 

3 1.06 2.654 0.570682 0.685182294 Yes 

4 1.34 3.971 0.68908 0.826774195 Yes 

5 1.76 5.031 0.851925 0.959524029 Yes 

6 1.84 5.743 0.969393 0.998414888 Yes 

7 2.12 5.964 0.978797 0.999264536 Yes 

8 1.82 5.623 0.995074 0.999966125 Yes 

9 1.4 4.499 0.976711 0.999104765 Yes 

10 1.16 3.828 0.877565 0.972407038 Yes 

11 0.96 3.219 0.754966 0.890375623 Yes 

12 0.82 2.538 0.616494 0.743592386 Yes 

13 0.68 2.073 0.508196 0.599716343 Yes 

14 0.58 1.673 0.399286 0.440684304 No 

15 0.54 1.313 0.325579 0.331321011 No 

16 0.46 1.135 0.297731 0.290788755 No 

17 0.44 0.981 0.245568 0.217486819 No 

18 0.4 0.87 0.233339 0.200982828 No 

19 0.38 0.824 0.209926 0.170312926 No 

20 0.36 0.802 0.198757 0.156167131 No 



 

 

 

Figure 2. Prediction model results 

 

5. Conclusion 

This paper examines the effects of combining search keywords by semantic similarity. 

Preliminary results show that different steps of lagging can be discovered between flu 

and sensor variables. HMM can alarm flu activity accurately through probabilistic 

reasoning. We aim to incorporate GIS in our next step of work to discover the 

spreading pattern of flu activities geographically. Our research also demonstrated VGI 

is highly potential data source that may be used to reveal hidden patterns in the 

population. 
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