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1. Introduction 
The classical one-to-one shortest path problem seeks a shortest sequence of arcs that 
connects two specified nodes in a network. The problem has a wide range of 
applications to geographic information technology including vehicle and pedestrian 
navigation systems, which aim to provide the user with a series of unambiguous route 
directions to any chosen destination. This abstract considers a situation where the user 
appreciates some freedom to take detours during the trip—for example, in response to 
unexpected local events—as long as the resulting path does not overly deviate from a 
shortest one. 

Let us begin with a trivial navigation problem in the grid-like network laid out on 
the left-hand side of Figure 1. We are at node 1 and would like to go to node 6. Any 
shortest path algorithm will find path 1-2-4-6, 1-2-5-6, or 1-3-5-6 as a shortest path. 
Then a navigation system will arbitrarily select one from these, and generate directions 
for the chosen path. For instance, path 1-2-5-6 could be sequentially described as “Go 
north and turn right at the first intersection. Turn left at the next intersection. Stay on 
the current street and you will reach the destination.” 

Once a route is set and directions are given, the rest seems straightforward. Some 
are willing to obey every step of the given route instruction almost blindly, for 
example, because they are total strangers in the area. Others, however, may find doing 
so too restrictive—for various reasons: they may know the locality better than the 
system and cannot resist making different (presumably better) turns than instructed; 
they may encounter unexpected events that prevent them from staying on any fixed 
route; or simply they are such a capricious character and want to wander as long as we 
are getting to the destination. 
 

 
 
 
 
 
 
 

Figure 1. A grid network (left) and its distortion (right). There are three paths from 
node 1 to node 6 in both networks. Note that the number associated with each arc 

represents the length of that arc. 
 

In the grid network illustrated above (on the left in Figure 1), we can be free of a 
route direction. There are only three paths from node 1 to node 6 and they all have the 
same length. Thus wherever we are, we just pick any direction (even randomly), and 
will reach the destination and realize that we have taken a shortest path. 



Of course, we should not be that fortunate in a more realistic network. Even a small 
modification to the grid network may deprive us of the freedom to take any arc at any 
node. The network on the right-hand side of Figure 1 serves as a good example. It is 
similar to the grid network except that nodes 3 and 4 are slightly displaced in diagonal 
directions, which elongates arc (1,3), (2,4), (3,5), and (4,6) by a small fraction, ε. This 
makes path 1-2-5-6 the only shortest path from node 1 to node 6, and we will have no 
choice but to make every turn exactly as instructed if we want to keep the trip as short 
as possible. However, if the kind of freedom we had were valuable, would it be 
sensible to completely abandon it just to avoid a little extra travel distance (as small as 
2ε)? 

This abstract proposes a similar alternative to the “take any arc at any node” 
strategy, assuming that we can make some compromise between the desire to have 
more route choices during the trip and the desire to make the trip shorter. It is designed 
such that we do not have to select any particular path prior to the trip; instead, 
wherever we are during the trip, we will be offered one or more direction choices that 
are guaranteed to lead to a path of specified length or shorter. 

2. Approach 
As outlined below, the approach currently under development is to determine, at any 
given node, which arcs are “admissible” (i.e. allowed to take without making all 
resulting paths prohibitively long) as a function of the path taken prior to reaching that 
node. 

First, recall that a solution to a shortest path problem is not just a single path but a 
set of shortest paths to the specified destination (or origin). There may be more than 
one such set depending on the underlying network, but there is always one that forms a 
tree (see Figure 2). From this tree, one can construct a shortest path from any node to 
the destination simply by tracing down the tree until the destination is reached. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. A tree of shortest paths (shaded) rooted at the destination (node 8). The 
number associated with each arc represents its length and the number associated with 
each node (also underlined) represents the length of a shortest path from that node to 

the destination. 
 

Now let ),( jic  be )()(),( idjdjic −+  where ijc  represents the length of arc ),( ji , 
and )(id  the length of a shortest path from node i to the destination. The value derived 
this way for each arc ),( ji  is generally referred to as its “reduced cost” (Ahuja et al. 
1993) and can be intuitively understood as representing how much the inclusion of 
arc ),( ji  would increase the shortest path length from node i to the destination. 

 



As illustrated in Figure 3, reduced costs help us find more than one shortest path 
from any chosen node to the sink because any sequence of arcs with zero reduced cost 
is a shortest path. Paths 1-3-6-8 and 1-5-3-6-8 are two such sequences. 
 
 
 
 
 
 
 
 
 

Figure 3. Reduced costs associated with the network presented in Figure 2. 
 

It is straightforward to utilize reduced costs to determine which arcs are admissible. 
Suppose that a traveler reaches node i after traversing path iW  and finds a set of arcs 

)(iS  admissible at node i. As so assumed in the beginning, )(iS  depends on iW  and is 
generally expressed as: 

}),,(|),{()( true=∈= iWjifAjiiS  (1) 

where ),,( iWjif  is some function that determines whether arc ),( ji  is admissible. 
While I have no intention to claim any particular form of ),,( iWjif  to be the best 

arc admissibility function, I can provide some ideas for a good design of ),,( iWjif . 
To do so, it is useful to note that the traveler has the following two opposing 
incentives: 

- He/she wants to take any arc at any node. 
- He/she needs to stay on a path of acceptable length. 

 
The dilemma can be at least partially resolved by letting the traveler take detours 

until it is inevitable that any resulting path will be longer than allowed, which, in turn, 
suggests a possible characterization of ),,( iWjif : the longer the length of path iW  is, 
the less likely arc ),( ji  becomes admissible. An example of such ),,( iWjif  is 
presented as follows. 

According to the definition of reduced cost, the difference between the length of 
path iW  and that of a shortest path is expressed as ∑
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to u at node i, the traveler must take a sequence of arcs with zero reduced cost from 
there on until reaching the sink. If ∑
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),(  is still smaller than u at node i, the 

traveler may take another arc next unless the addition of its reduced cost to ∑
∈ iWlk
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),(  

results in exceeding u. This reasoning leads to the following simple form of ),,( iWjif  
that guarantees to make the resulting path equal to u or shorter: 
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Figure 4 illustrates how Equation 2 determines the admissibility of arcs. Suppose 
5=u  and that a traveler has traversed path 1-2-3 to reach node 3 (on the left). The sum 

of the reduced costs of the arcs comprising this path is 3 (= 2 + 1), which is greater 
than u by 2 (= 5-3). Thus the traveler can afford to take any arc with reduced cost of 2 
or less. This makes arcs )4,3(  and )6,3( admissible but arc )5,3(  inadmissible. 
However, if the traveler takes path 1-3 (on the right), all of them are admissible. 
 
 
 
 
 
 
 
 
 

Figure 4. Evaluation of the admissibility of arcs. Assuming that u = 5, node 3 may 
have different admissible arcs (marked by dashed lines) depending on the path 

traversed (marked by solid lines) before that node. 
 

Preliminary computer simulations were performed to see how the above arc-
admissibility rule will navigate a random walker through a sample network. Starting at 
the same origin (a node at the bottom), each path drawn in Figure 5 was progressively 
constructed by selecting with equal probability one of the admissible arcs at each node 
(determined by Equation 2 with u equal to 20% of the shortest path length) until the 
destination was reached. 
 

 

 

 

 

 

 

 

Figure 5. Paths realized according to the arc-admissibility rule expressed by Equation 
2. Note that some nodes and arcs may be visited more than once in each path. 

 
Although it was not originally intended for this purpose, another use of the 

proposed procedure is to generate alternative routes, from which the “best route” (with 
respect to some intricate and intangible criteria) is to be selected prior to the trip. An 
existing approach to this task is to solve “the k shortest paths problem,” which, as its 
name suggests, seeks k shortest paths where k is a certain natural number (see, e.g., 
Hoffman and Pavley 1959, Yen 1971, Lawler 1972, Eppstein 1998). 
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