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1. Introduction 

This paper details an on-going PhD project that is studying the application of Ant 

Colony Optimization (ACO) to automated map generalization problems. One objective 

of the project is to compare ACO with alternative approaches. The paper begins by 

introducing the general ideas of ACO. It then presents a specific map generalization 

problem - network schematization - and an ACO solution is described. Initial results 

are presented and compared with a previous Simulated Annealing solution.  

2. Ant Colony Optimization (ACO) 

An ant when searching for a food source initially wanders randomly.  Upon finding 

food it returns to its colony while laying down a volatile chemical trail called a 

pheromone (Goss et al, 1989). Other foraging ants that smell the pheromone trail are 

more likely to be influenced to follow the path to the food source than continuing to 

wander randomly.  Probabilistically, the stronger the pheromone trail, the more likely 

it is that an ant will follow the path.  Pheromone trails are strengthened by each ant 

following the path.  Initially, there may be many different pheromone trails leading to 

a single food source.  However, over time the strength of the pheromone chemical 

evaporates reducing its attractiveness to other foraging ants. Thus, as an ant walks, the 

pheromone it deposits evaporates behind it after a period of time. Longer trails take 

more time for each ant to walk along and it follows that there is less pheromone 

density over the trail as a result.  Shorter routes to a food source will not take as long to 

traverse, which helps to maintain a high degree of pheromone density because any 

evaporation is compensated for by additional pheromone deposits.  The more ants that 

are attracted to the trail the more pheromone density increases. Pheromone evaporation 

is a vital component to the ant colony to prevent all routes having equal attractiveness.  

Over a period of time the ants will converge on the shortest path to the food source. 

This collective ant behaviour of pheromone laying, sensing and following paths to 

food source was the original inspiration for ACO algorithms. In a simulated system, 

evaporation prevents an algorithm from converging to a local optimum. 

The ACO meta-heuristic (Dorigo et al, 1996) employs a colony of artificial ants that 

collaborate to find a good solution to a discrete combinatorial optimisation problem. 

The colony of artificial ants communicates with each other indirectly through the use 

of artificial pheromone trails. Artificial ants possess some of the characteristics of their 

real counterparts as well as additional traits that generally suit the optimisation 

problem at hand.  

3. Map Schematization 

Perhaps the most well known example of a schematic map is the London Tube map 

designed by Harry Beck (see http://www.tfl.gov.uk/tfl/maps-home.shtml for this and 

http://www.tfl.gov.uk/tfl/maps-home.shtml


many hundreds of other examples). The types of schematic maps dealt with in this 

paper have the following properties: 

 

(i) They are derived from network data sets consisting of polylines, edges and 

vertices; 

(ii) Polylines are simplified to their most elementary shapes; 

(iii) They are topologically equivalent to the input network; 

(iv) If possible, edges should lie in horizontal, vertical or diagonal direction; 

(v) If possible, edges should have length greater than some minimum length 

(effectively increasing map scale in congested areas). 

 

This paper addresses points (iii)-(v), considering them an optimization problem. 

Given an input network (pre-simplified using a suitable line generalization algorithm), 

an alternative state can be obtained by displacing one or more of the network vertices, 

resulting in re-orientation, shortening and lengthening of edges. The search space 

being examined is the set of all possible states of the input network. Each state can be 

evaluated in terms of how closely it resembles a schematic map (i.e. meets a set of 

constraints based on (iii)-(v)). However, finding the best state by exhaustively 

generating and evaluating all possible states in not possible, as for any realistic data set 

the search space will be excessively large. An ACO algorithm for producing schematic 

maps for network data has therefore been developed. 

4. ACO Applied to Map Schematization 

4.1 The Algorithm 

Each vertex in the network is assigned two matrices– a displacement matrix and a 

pheromone matrix. The displacement matrix is centred over the original location of the 

vertex and its cells represent all possible locations into which the vertex can move. 

Cell size governs the minimum distance a vertex can be displaced. Cell size together 

with matrix size (the number of cells) determines the maximum distance a vertex can 

move.  Each displacement matrix cell has a corresponding cell in the pheromone 

matrix. The value of a pheromone cell represents pheromone strength at its 

corresponding location at any given time; to begin, all pheromone matrix values are 

initialized to a pre-determined value. 

ACO is an iterative process involving a colony of artificial ants working in parallel. 

Ant colony size is an input parameter to the algorithm (there is no set value). For each 

iteration each ant starts with the original network (no vertex displacement) and builds 

its own solution by performing a fixed number (e.g. 1000) of vertex displacements. 

After each displacement the network is evaluated (against the constraints) and assigned 

a cost. For each displacement, a vertex is randomly selected and allowed to move from 

its current matrix location to an adjacent matrix cell. The direction of vertex movement 

is chosen by a so-called state transition rule, which is influenced by the vertex’s 

associated pheromone matrix (higher values encourage movement) and additional 

heuristic information (e.g. immediate cost benefit). Within each iteration, a 

displacement triggers a corresponding reduction of pheromone value (this so-called 

local update encourages a more complete exploration of the search space). Note that 

for each vertex all ants are accessing and updating the same pheromone matrix. At the 

end of each iteration each ant will have produced a solution. The best solution (lowest 

cost) is used to globally update all pheromone matrices to strengthen pheromone 

values along the paths from original vertex locations to their new locations in this best 



solution. This encourages better moves during the iterations that follow. The process 

repeats until stopping conditions (e.g. maximum number of iterations, maximum time, 

acceptable cost, etc.) are met. 

4.2 Initial Results 

The ACO algorithm has been implemented using Java. Initial experiments have been 

carried out using OSCAR road centre line data for the St. David’s area of West Wales. 

The original test data consisted of 205 edges, made up from a total of 187 vertices. 

This data is pre-generalized using the ArcGIS Simply Line tool; with point remove and 

topological error check options selected this makes use of an enhanced version of the 

Douglas-Peucker algorithm. A weed tolerance value of 50(m) is used in these 

experiments, resulting in 67 edges made up from a total of 59 vertices.  The simplified 

data (Figure 1) acts as input to the ACO algorithm. The initial cost (in terms of 

constraints) for the input network is 640.5. 

 

 
Figure 1 – Input road network. Cost = 640.5. 

 

Figure 2 shows output produced by ACO after a total of 976,000 vertex 

displacements (in less than 2 seconds). The cost has been reduced to 99.5.  For 

purposes of comparison, a Simulated Annealing (SA) solution (based on Ware et al, 

2006) has also been implemented in Java. The best SA solution generated to date 



(shown in Figure 3) has a cost of 171.1 (after 3,450,000 vertex displacements). It was 

also noted that after 25,000 vertex displacements, ACO cost had reduced to 179.1 and 

SA cost had reduced to 333.0. 

 

 
Figure 2 – Schematic map produced by ACO. Cost = 99.5, number of vertex 

displacements = 976,000. 

 



 
Figure 3 – Schematic map produced by SA. Cost = 171.1, number of vertex 

displacements = 3,450,000. 

5. Conclusion 

This paper has presented an ACO solution to the problem of map schematization. It 

has shown that ACO can be successfully applied to a simple road network. When 

compared to a SA solution, initial results suggest that ACO is able to reduce overall 

cost at a faster rate (i.e. few displacements) and produces a better result overall (in 

evaluation cost terms). It should be noted however that the performance of both 

approaches is very dependent on a variety of input parameters, and the next phase of 

research will seek to optimize these parameters to ensure a fair comparison. Future 

work will concentrate on testing the ACO on more realistic data and carrying out a 

more rigorous evaluation of constraints and output (involving user testing). ACO will 

also be applied to other map generalization problems (e.g. Richards et al, 2010). 
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