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1. Introduction 

Digital Elevation Models (DEMs) are an important data source for a range of scientific 

and commercial applications, which accuracy depends on the accuracy of the input 

DEMs. Examples of such applications are hydrological studies, topographic mapping 

and landscape modelling, among others.  

Different technologies (e.g. Lidar, radar, photogrammetry) exist for producing 

accurate high resolution DEMs. However, DEMs produced using these technologies 

are generally limited to small areas and are expensive. In contrast, low spatial 

resolution DEMs cover most of the planet and are freely available. Consequently, these 

DEMs are commonly used in applications with limited resources (Hirt et al. 2010). 

However, the accuracy of low resolution DEMs that are freely available (e.g. Aster 

GDEM, SRTM) is undocumented for specific study areas and only an estimate of the 

global or regional accuracy is provided with them, adding uncertainty to their use. 

In this paper we recommend the use of geostatistical conflation to reduce the 

uncertainty associated with the use of low resolution DEMs by increasing their vertical 

accuracy by means of conflating them with a set of sparsely distributed Ground 

Control Points (GCPs) using Kriging with an External Drift (KED). 

2. Geostatistical Conflation 

The application of geostatistical techniques to the integration of datasets with different 

accuracies and spatial resolutions is known as geostatistical conflation (Kyriakidis et 

al. 1999). The main objective of geostatistical conflation is to combine the properties 

of the input datasets to produce more accurate and representative products (Zhang and 

Goodchild 2002). 

Geostatistical conflation has been previously applied to elevation to assess accuracy 

and uncertainty using Cokriging as the conflation technique (Kyriakidis et al. 1999), to 

increase the accuracy of photogrammetric DEMs using Cokriging and simulated 

annealing (Zhang and Goodchild 2002) and to produce more accurate DEMs using 

auxiliary variables using Regression Kriging (RK) (Hengl et al. 2008). The technique 

we use in this paper, KED (described below), is equivalent to RK when the same 

neighbourhood is used in the Kriging system (Hengl et al. 2007).   

2.1 Kriging with an External Drift 

Kriging with an External Drift (KED) is a geostatistical technique that can be used to 

conflate multiple datasets since it incorporates auxiliary information in the Kriging 



estimator and reproduces the spatial complexity of the input datasets into the output 

surface (Goovaerts 1997). 

KED incorporates multiple datasets into the Kriging system by using the auxiliary 

information (DEM in this case) to estimate the local mean (i.e. trend) of the primary 

variable (GCPs) and then perform Kriging on the corresponding residuals. The trend is 

estimated within the Kriging system for each local neighbourhood as (Goovaerts 

1997:194) 
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where )(uy  is the secondary information. The KED estimator is defined then as 

(Goovaerts 2000:121) 
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3. Study Case 

3.1 Study Area 

In this paper we use a 1x10 km study area located in Veracruz, Mexico (centred at 

19º32’24” N and 96º30’44” W). The area is rich in topography with flat areas in the 

centre and mountainous terrain near the borders. The elevations range from 111 m to 

358 m, with a mean slope of 9º, as reported by Lidar datasets. The area is sparsely 

vegetated, with the exception of the last 2 km to the south of the study area. 

3.2 Datasets 

Three low spatial resolution DEMs are freely available for the study area: the Aster 

GDEM (METI-NASA 2009), the SRTM DEM v4 (Jarvis et al. 2008) and the Inegi 

DEM (the Mexican national elevation dataset; INEGI 2003). 

The Aster (Figure 1a) and the Inegi (Figure 1b) DEMs spatial resolution is 1 arc-

second or 30 m. The expected vertical accuracy of the first is between 7 m and 14 m 

(METI-NASA 2009). The accuracy of the Inegi DEM is undocumented. The SRTM 

DEM (Figure 1c) spatial resolution is 3 arc-seconds or 90 m with an expected accuracy 

of 10m (METI-NASA 2009). 

The set of GCPs (Figure 1e) that was conflated with the DEMs was extracted from 

Lidar data available for the study area. A total of 312 GCPs were extracted near the 

roads and important topographic features with a minimal horizontal spacing of 30 m. 

A Lidar DSM (Digital Surface Model; Figure 1d) was used as reference to assess 

the accuracy of the DEMs. The original spatial resolution of the Lidar DSM is 1 m 

with a vertical accuracy of 0.1469 m (assessed using 965 GCPs collected using Real-

Time Kinematic GPS). 

3.2 Data processing 

The data processing was undertaken in R (R Development Core Team 2009). First, all 

the datasets were imported into R using the package rgdal (Keitt et al., 2010). Then, to 

assess the accuracy of the DEMs the Lidar dataset was resampled to match the spatial 

resolution of the different DEMs using the package raster (Hijmans and van Etten 

2010). The resampled Lidar DSM was subtracted from the three DEMs to assess their 

vertical accuracy. The results are reported in Table 1.   

 



 
Figure 1. Datasets used in this paper. a. Aster GDEM. b. Inegi DEM. The area 

enclosed in the box was removed, reported in the error statistics as Inegi DEM (ER). 

c. SRTM DEM. d. Lidar DSM. e. Set of GCPs conflated with the DEMs. 

 

In order to assess the accuracy of a DEM produced using only the GCPs, Ordinary 

Kriging (OK) as implemented in the R version of gstat (Pebesma 2004) was used to 

produce DEMs matching the spatial resolution of the existing DEMs (30 m and 90 m). 

Their accuracy was assessed using the resampled Lidar DSM and reported in Table 2.  

Each of the low resolution DEMs was conflated with the GCPs using Kriging with 

an External Drift (KED), also using gstat. The elevation reported by the DEMs was 

used as the regressor and the GCPs as the primary information. The accuracy of the 

conflated DEMs is reported in Table 3.  

Since it was observed that the Inegi DEM reported erroneous elevations in the 

vegetated area, this area was removed and KED was undertaken using the rest of the 

area and 277 GCPs. The error statistics from this subset are reported as ER (Error 

Removed) in the tables below. The area that was removed is shown in Figure 1b. 

 

Table 1. Original DEMs Error Statistics. 

 

DEM RMSE Mean Std. Dev. Min Max 

Aster GDEM 5.4329 1.4096 5.2471 -28.3202 20.8639 

Inegi DEM 11.5371 5.2352 10.2814 -31.6234 75.4420 

Inegi DEM (ER) 7.4441 3.7828 6.4117 -26.2211 33.3725 

Srtm DEM 8.2137 2.4419 7.8462 -35.2507 43.9907 

 

Table 2. Ordinary Kriging (OK) DEM Error Statistics. 

 

DEM RMSE Mean Std. Dev. Min Max 

OK 30m 17.0868 -0.2210 17.0862 -50.4549 201.2829 

OK 90m 15.9790 -0.5821 15.9749 -46.1691 130.0117 



4. Results 

Table 3 shows the results of the accuracy assessment of the conflated DEMs using 

KED. The Root Mean Squared Error (RMSE) of the three conflated DEMs was 

reduced, the mean error was brought close to zero and the error standard deviation was 

also reduced. 

Furthermore, in all cases the accuracy of the conflated DEMs is higher than that of 

the DEMs produced using individual datasets (Tables 1 and 2). However, in the case of 

the Aster GDEM the accuracy increase is marginal, possibly due to the presence of 

artefacts in its current version (Hirt et al. 2010) which cause instability in KED 

(Goovaerts 1997:195). 

To sum up, the results presented here suggest that the geostatistical conflation of 

low spatial resolution DEMs with a set of sparsely distributed GCPs increases the 

vertical accuracy of the DEMs, which should also increase the accuracy of the 

applications where these DEMs are used and reduce the uncertainty associated with 

their use. 

 

Table 3. Conflated DEMs Error Statistics. 

 

DEM RMSE Mean Std. Dev. Min Max 

KED Aster 5.3136 -0.1923 5.3104 -23.0801 24.2297 

KED Inegi 7.2816 0.6868 7.2494 -30.4990 61.4068 

KED Inegi (ER) 5.6448 0.2903 5.6376 -23.7957 27.2045 

KED Srtm 6.5961 1.4416 6.4393 -22.1884 30.3891 
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