
Efficient Spatio-Temporal Search of Objects Moving on
a Graph

Thuy Thi Thu Le and Bradford G. Nickerson

m6839|bgn@unb.ca

Faculty of Computer Science, University of New Brunswick

P.O. Box 4400, Fredericton, N.B. Canada E3B 5A3

1. Introduction

We address the challenge of indexing a large number of moving objects to improve
the response time of searching for the identity of all moving objects intersecting (time
× space) rectangular queries. This paper focuses on indexing historical positions of
objects moving on a fixed graph G = (V,E) containing |E| edges and |V | vertices. The
graph can be non-planar as it often is when representing road networks (Eppstein and
and Goodrich 2008). Existing work on indexing objects moving on a graph includes the
MON-tree (de Almeida and Güting 2005), PPFI (Fang et al. 2008), FNR-tree (Frentzos
2003), and (Pfoser and Jensen 2003). The common point of these data structures is
to combine several R-trees to index moving objects on a fixed network. A network is
indexed by an R-tree (Leutenegger and Lopez 2005) while moving objects are indexed
on a forest of R-trees, whose roots are linked to leaf nodes of the network tree. An
object moving at a constant velocity on an edge is represented as a (time interval
× position interval) rectangle. The disadvantage of these data structures is that the
number of reported objects for a query can be many more than the exact result.
Figure 1 shows an example of five rectangles representing five moving objects o1, ...,
o5 intersecting a shaded query rectangle R. Only two moving objects o3 and o4, whose

1

0
t

r
o3

o4

o5

o1

o2
R

Fig. 1: Five rectangles represent five moving objects o1, ..., o5. Only two diagonal line
segments of o3 and o4 intersect the shaded rectangle query R.

rectangle’s diagonal line segments intersect with R, are actually in range. In the worst
case, all moving object rectangles on an edge intersect the query rectangle R, but none
of them is in range.

We propose a new data structure that allows us to precisely retrieve moving objects
intersecting a query. Instead of using R-trees to index bounding boxes of moving
objects, we index oriented line segments representing positions of moving objects at
different times. We can answer a rectangle R plus time interval query in O(log2 |E|+
|L| log2(n/|L|) + k) time, where n is the number of moving object instances (unique
entries of moving objects) on a graph with |E| edges, |L| is the number of edges
intersected by R and k is the precise number moving object instances in range. This
improves our previous search time results of (Le and Nickerson 2008) by reporting
only those moving objects in range. None of the previous research reports worst case
query time, but they all depend on R-tree indexing for spatial search of the graph
which requires Ω(|E| 12) time. Further analysis of previous research search complexities
is given in Technical report TR10-199 (Le and Nickerson 2010).

2. Proposed Approach

We support the query Q2 = (R, [t1, t2]) to count or report the k moving objects
intersecting rectangle R at any time during time interval [t1, t2]. A spatio-temporal
query Q2 = (R, [t1, t2]) is transformed to query rectangles Q3 = [t1, t2] × [r1, r2] by
finding positions r1, r2 that span the query rectangle R on an edge. In Figure 2a and
Figure 2b, a query Q2 on an edge is transformed to two query rectangles Q3.

r=0

r=10.65

0.1

0.45
0.8

0.1

0.45

1
r

t

0.65
0.8

(a) (b)

10 400

A B

CD

(c)
Fig. 2: (a) Spatio-temporal query Q2 = (R, [10, 40]) is transformed into (b) two query
rectangles Q3: [10,40]×[0.1, 0.45] and [10,40]×[0.65, 0.8]. (c) lines with slopes m ∈
(0,∞] intersect rectangle ABCD if they intersect AD or DC.

Each moving object is represented by a diagonal line segment of a (time interval) ×
(position interval) rectangle. Each point on this line segment corresponds to a position
of a moving object at a specific time. If a line segment intersects a query rectangle, its
corresponding moving object is in range. When objects move across an edge from r = 0
to r = 1, their corresponding path on that edge is considered as a line in a bounded
plane formed by (t × r), for t ∈ [0, T] the time domain, and r ∈ [0, 1] positions on
an edge. Our approach reduces to find the intersections of a query rectangle ABCD
(see Figure 2c) with a set of lines having slope m ∈ (0,∞]. Lines intersect the query
rectangle if they intersect line segments AD or DC. We divide a set of bounded lines
into two subsets L1 and L2. L1 contains objects moving from r = 0 to r = 1, and

o1.1

o1.2

o2.2

o2.1

o3.1

o3.2

o4.1

o4.2
o5.2

o6.1

o7.1
o8.1

0 5 10 15 20 t

r
1

.5

o3.3

o3.4

o3.6

o8.2o4.3
o5.3

o5.1

o6.2

o7.2

A B

CD

t-level(15.0) t-level(19.2)

r-level(0.63)

r-level(0.36)

Fig. 3: Lines represent 8 objects moving at a constant velocity over an edge in the
direction from r = 0 to r = 1. oj.i ∈ the line representing moving object oj. Query
rectangle ABCD has points A=(17, 0.77) and C=(20, 0.6). Dashed lines show t-levels
and r-levels near AD and DC. Objects o3 and o8 are in range.

L2 contains objects from r = 1 to r = 0 (with slope m ∈ (−∞, 0]). Without loss
of generality, the rest of this paper focuses only on indexing and searching in L1.
Algorithms and analysis for L1 also hold for L2.

We use the notion t-level(i) to refer to a set of lines intersecting line x = i ordered
top-to-bottom. Similarly, r-level(i) refers to a set of lines intersecting line y = i ordered
left-to-right. Figure 3 shows an example of two t-levels: t-level(15.0) and t-level(19.2),
and two r-levels: r-level(0.36) and r-level(0.63). The order of lines changes where lines
intersect. Consider a set of lines and a query rectangle ABCD in Figure 3, we only
need to search for lines intersecting AD on t-level(15) and DC on r-level(0.36). We
build a data structure for efficient search based on this idea.

An ordered polyline pi is created by connecting line segments at intersections
(with each other and with the r = 0, and r = 1 boundaries). For example, the
first three ordered polylines in Figure 3 are p1 = {o1.1, o2.2}, p2 = {o2.1, o1.2}, and
p3 = {o3.1, o4.2, o5.3}, ordered from left to right; they do not intersect each other.
Points in an ordered polyline are monotonically increasing in both t and r. We con-
nect points in an ordered polyline together into a list of entries, and arrange ordered
polylines in a balanced search tree.

In the worst case, every line representing a moving object instance intersects the
lines representing all other moving object instances on the same edge (see Figure 4).
Therefore, there are O(g2

i) lines for gi moving object instances on edge i, and each
ordered polyline requires O(gi) line segments. The number of ordered polylines is still
precisely gi.

3. Indexing Moving Objects on an Edge

Ordered polylines are arranged as a balanced binary search tree, called an ordered
polyline tree, based on each pi dividing space (t × r) into two parts. Each ordered
polyline contains a list of entries. Each entry contains a point (t, r), a moving object

0

1
r

tTo1 o2 o3 o4 o5 o6 o7 o8

Fig. 4: Example of 8 bounded lines representing 8 moving object instances o1, ..., o8 in
the worst case, where each object instance intersects 7 others in time.

ID corresponding to the line connecting to the point, three t-pointers, and one r-
pointer. Three t-pointers point to the left, right, and next adjacent entries (belonging
to the left, right, and next adjacent ordered polylines, respectively) on t-levels. One
r-pointer points to the next adjacent entry belonging to the next adjacent ordered
polyline on r-levels.

For a polyline pi with t-entry tj, the (left, right, next) pointers point to the largest
t-entry in pi’s (left, right, next) node ≤ tj, respectively. If no t-entries in pi’s (left,
right, next) nodes are ≤ tj, the (left, right, next) pointers point to the smallest t-entry
> tj. In this way, we record all line segments in the arrangement of bounded lines such
that a traversal of the tree from root to leaf serves to find the polyline immediately
to the left of the query point A. Following next pointers of t-entries finds segments
of ordered polylines in downward order for a vertical query segment AD. Following
next pointers of r-entries finds segments of ordered polylines in left-to-right order for
a horizontal query segment DC. Figure 5 shows an example of an ordered polyline
tree. Ordered polyline trees can be made dynamic as presented in (Le and Nickerson
2010).

4. Indexing Edges of a Graph

An edge on a fixed graph G = (V,E) is considered as a polyline. We index each edge
by a strip tree (Ballard 1981). Strip trees are merged bottom up in pairs to construct
a graph strip tree. Figure 6a shows an example of strip trees created from a fixed graph
containing four edges e1, e2, e3, and e4, and Figure 6b shows a graph strip tree from
the merged strip trees. Leaf nodes Ci point to strip tree Si spatially indexing ei and
to ordered polyline tree Ti indexing lines representing moving objects on ei. Note that
Ti stores the L1 subset of the moving objects. Although not shown in Figure 6b, a
second ordered polyline tree Ui storing objects in L2 is required.

An ordered polyline tree uses O(gi + λi) space to index a set of gi lines with λi

intersections among them. A graph strip tree with |E| edges uses O(|E| + n + λ)
space to index a set of n moving object instances with λ intersections among lines

1
14

o6o3o5

.35.220r
9.26.85.8t

1
8

o1o2

.320r
2.71.4t

1
5.3

o2o1

.320r
2.70.3t

1
9.5

o5o4o3

.73.080r
8.53.32t

1
10.8

o4

.73
8.5

o5o3o4

.22.080r
6.83.32.8t

1
20.7

o8

.82
19.2

o3o7

.630r
157.2t

1
19.6

o7o3o6

.63.350r
159.26.5t

1
22.8

o3o8

.820r
19.212.8t

p5

p2

p7

p6

p8

p3p1

p4

Fig. 5: Ordered polyline tree indexing the 8 lines from Figure 3. A three-row rectangle
represents an ordered polyline, where each column is a point represented as an entry.
A dashed line represents a pointer of an entry to its adjacent entry for r-level(0).

representing moving objects (i.e., λ =
∑|E|

i=1 λi). Proof of the space complexity is given
in Technical report TR10-199 (Le and Nickerson 2010).

5. Search Complexity

Given query rectangle Q3 with four vertices A, B, C, D in the clockwise direction with
D = (x, y), searching finds lines in t-level(x) intersecting AD and lines in r-level(y)
intersecting DC. For a single edge, and assuming objects move at a constant velocity,
the time to report moving objects intersecting a query rectangle Q3 on the ordered
polyline tree Ti is O(log2(gi) + ki), where gi is the number of moving object instances
stored in Ti, and ki is the number of moving object instances in range.

A graph strip tree indexing n moving object instances on |E| edges of a graph
answers a Q2 query in time O(log2 |E|+ |L| log2(

n
|L|) + k), for k the number of moving

object instances in range, and |L| the number of edges on the graph intersecting Q2.
Theorems proving these results are in Technical report TR10-199 (Le and Nickerson
2010). If the number of moving object instances is much greater than the number of
edges on the graph (i.e., n� |E|), we expect the search time to be dominated by the
time O(|L| log2(

n
|L|) + k) to search |L| ordered polyline trees.

6. Conclusion

We present a new data structure for efficient search of objects moving on a graph. Our
data structure is a combination of strip trees and ordered polyline trees. Strip trees are
used for spatial indexing of the graph edges. Ordered polyline trees are used to index
moving objects on edges. For n moving object instances on a graph with |E| edges, we

e1

e2

e4

e3
M1 M2

M3

C1

C2
C3

C4

v1
v2

v3

v4

(a)(a)

M3

M1 M2

C1

S1

C2

S2

C3

S3

C4

S4T1 T2 T3 T4
(b)(b)

Fig. 6: (a) Four edges of graph G are represented as four strip trees, with C1, ..., C4

representing the root bounding boxes for each strip tree. Bounding boxes are merged
bottom up in pairs to construct (b) a graph strip tree.

show that O(log2 |E|+ |L| log2(
n

|L|) + k) time is required to answer a Q2 query, for |L|
the number of edges intersecting Q2, and k the number of moving objects in range.
For λ intersections among paths of n moving object instances, the required space for
the graph strip tree is O(n+ λ+ |E|).

We are working on experimental validation of the results presented here using
Canadian road networks. An open problem is how to efficiently index moving object
instances to achieve an I/O-efficient worst case optimal search complexity.

Acknowledgements

This research is supported, in part, by the Natural Sciences and Engineering Research
Council (NSERC) of Canada, the UNB Faculty of Computer Science, and the govern-
ment of Vietnam. We gratefully acknowledge this support.

References

Ballard D. H., 1981, Strip trees: a hierarchical representation for curves. Communications of the
ACM, 24(5):310-321.

de Almeida V. T. and Güting R. H., 2005, Indexing the trajectories of moving objects in networks.
GeoInformatica, 9(1):33-60.

Eppstein D. and Goodrich M. T., 2008, Studying (non-planar) road networks through an algorithmic
lens. In Proc. of the 16th ACM SIGSPATIAL Int. Conf. on Advances in Geographic Information
Systems (ACM GIS 2008), Irvine, CA, USA, Nov.5-7, 1-10.

Fang Y., Cao J., Peng Y., and Wang L., 2008, Indexing the past, present and future positions of
moving objects on fixed networks. In Proc. of the Int. Conf. on Computer Science and Software
Engineering (CSSE 2008), Wuhan, China, Dec. 12-14, IEEE Computer Society Press, 524-527.

Frentzos E., 2003, Indexing objects moving on Fixed networks. In Proceedings of the 8th International
Symposium on Spatial and Temporal Databases (SSTD 2003), Santorini, Greece, Jul. 24-27,
289-305.

Le T. T. T. and Nickerson B. G., 2008, Efficient Search of Moving Objects on a Planar Graph.
In Proc. of the 16th ACM SIGSPATIAL Int. Conf. on Advances in Geographic Information
Systems (ACM GIS 2008), Irvine, CA, USA, Nov. 5-7, 367-370.

Le T. T. T. and Nickerson B. G., 2010, Towards a Dynamic Data Structure for Efficient Bounded Line
Range Search. In Proceedings of the 22nd Canadian Conference on Computational Geometry
(CCCG 2010), Winnipeg, Manitoba, Canada, Aug. 9-11, in press.

Le T. T. T. and Nickerson B. G., 2010, Graph Strip Tree for Efficient Search of Objects Moving on a
Graph. Technical report, TR10-199, Faculty of Computer Science, UNB, Fredericton, Canada,
15 pages.

Leutenegger S. and Lopez M. A., 2005, Handbook of Data Structures and Applications, Chapter 12.
Pfoser D. and Jensen C. S., 2003, Indexing of network constrained moving objects. In Proc. of the

11th ACM Int. Symposium on Advances in Geographic Information Systems (ACM GIS 2003),
New Orleans, Louisiana, USA, Nov. 7-8, 25-32.

