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1. Volunteered Geographic Information
There is an explosion of geographic information generated by individuals on the Web. 
Users provide geotagged photos and tweets, geotag Wikipedia articles, create gazetteer 
entries,  update  geographic  databases  like  OpenStreetMap  (OSM)  and  much  more. 
Such user-generated geodata, also called Volunteered Geographic Information, VGI 
(Goodchild  2007),  is  becoming  an  important  source  for  geo-services  like  map 
generation, routing, search, spatial analysis and mashups.  Different from traditional 
geodata, VGI often has no distinct classifying attributes or explicit taxonomy. Users 
are free to create new tagging schemas or add new properties or text.  Although some 
schema checks may exist on the editor level through auto-completion or templates, 
these checks are not strict and can be ignored by the user. 

Analyzing  the  dynamic  and  heterogeneous  schemas  of  VGI  to  find  common 
conceptualizations is an important and complex task. For example, Deng et al. (2009) 
use density based clustering and a document term matrix to find conceptualizations in 
geotagged Flickr images. Edwardes and Purves (2007) explore the potential to develop 
a  hierarchy  of  place  concepts  based  on  co-occurring  characteristic  terms  in  the 
description of geotagged photos of the British Isles. Extracting and exploring concepts 
is an important prerequisite to analyze the quality and consistency of a dataset and to 
evaluate its “fitness for use” (Gervais 2009). 

We describe  our  work  on  using  frequent  pattern  mining  to  extract  and  explore 
conceptualizations of VGI. Frequent pattern mining is used for effective classification 
in association rule mining (Liu et al. 1998). Afrati et al. (2004) use frequent sets to find 
approximate  patterns,  which  is  a  promising  technique  for  concept  extraction  and 
exploration. For geospatial data, frequent pattern mining is used to determine spatial 
association rules (Koperski 1995) and to perform co-occurrence analysis (Han 2009). 
In our approach we transform VGI into a flat model of transaction objects, which can 
be input to frequent pattern mining algorithms. 

Different from transactions of market basket data, which are the typical input to 
frequent  pattern  mining,  geospatial  patterns  may  occur  rarely  in  a  dataset  but  are 
nevertheless interesting.  Ding et al.  (2006) introduce a framework to mine regional 
association rules based on prior clustering to find patterns in subregions. However, to 
extract concepts, mining subregions is not an option. We explain what extensions to 
frequent pattern mining are needed to deal with the scale-dependency and introduce a 
bottom-up mining approach based on quadtrees. We developed a prototype framework 
to mine the frequent patterns apriori, which then can be efficiently accessed by clients. 
For  this,  we describe the OSM Explorer,  which visualizes  frequent  patterns  in  the 
OSM dataset and performs data consistency and quality checks.



Figure 1. OSM Explorer: Visualization of the pattern (building, amenity).

2. Transaction Model
To employ frequent pattern mining to extract concepts  from VGI, the heterogeneous 
geographic information needs to be transformed into transactions. A transaction has an 
associated set  of items and is  input record frequent  pattern mining.  We view each 
geoobject as a transaction having a geometry and a set of attributes. Attributes can be 
key-value pairs (representing an attribute name and value) or just keys (like tags). Text 
has to be itemized first. For example, by using frequency term vectors or by extracting 
named entities, a text describing geographic information can be transformed into a set 
of attributes. In general, a geoobject is represented as a transaction as follows:

Transaction ( ObjID, Geometry, List( (Key, [Value]) ) )

By  determining  frequent  itemsets  from  such  transactions  one  obtains  frequent 
patterns of attribute names (if key is the name of a property), tags (if key is a tagname) 
or  words  (if  key is  the word of a  frequency term vector).  These frequent  patterns 
cannot  yet be seen as concepts,  but they are good candidates  for building concept 
hierarchies and classification models in a subsequent step. The result of some frequent 
patterns in the OSM data, which can be interpreted as collaborative generated schemas 
for geographic concepts, is illustrated in Figure 1. The above process is discussed in 
more detail in (Sengstock and Gertz 2010).

3. Scale-Dependent Mining
A pattern is called frequent if it has a minimum support, that is, it occurs a minimum 
number of times in a given dataset. Patterns that only occur rarely are not considered. 
However, geospatial patterns occurring with a low frequency in a dataset can still be 
interesting for concept extraction. This is either because they are 1) densely clustered 
(and thus may represent a local/regional pattern on a large scale) or 2) they are widely 
distributed (and thus may represent a pattern on a small scale). We use a bottom-up 
approach based on a quadtree data structure to determine which items are candidates 
for itemset generation on a certain scale, as shown in Figure 2.



The items of every transaction in each leaf node of the quadtree (which constitutes a 
grid of cells over the input data space) are counted. The items that occur in a cell with 
at  least  a  minimum  frequency  are  used  to  generate  frequent  itemsets  over  the 
transactions within this cell. On the next higher level all items that have not been used 
so far are summarized. If they reach the minimum frequency they are input to frequent 
itemset mining at this level. This step is repeated until the root node is reached. The 
determined itemsets are linked to the according nodes in the quadtree, which then also 
allows for fast exploration, for example, via a map interface.

4. Framework and OSM Explorer
Because of the complexity of frequent pattern mining algorithms it is necessary to pre-
process  the  frequent  itemsets  to  allow  for  efficient  exploration.  We  developed  a 
Frequent Pattern Store (see Figure 3) that handles the data import and transformation 
(Importer), the scale-dependent pattern mining (Frequent Pattern Miner) and the query 
processing of extracted patterns (Query Engine). 

The framework can be deployed as a service and provides an API to allow ad-hoc 
queries for frequent patterns in a given region, and queries to retrieve the objects of a 
given frequent pattern. Editors can be extended to use the service for auto-completion 
of  attribute  names,  calculation  of  quality  measures,  and  the  processing  and 
visualization of available patterns. We implemented the OSM Explorer as a GUI with 
a map interface to visualize frequent patterns and quality measures (Figure 1). The 
GUI connects to the service and displays the frequent patterns of the map extent. The 
geoobjects  of  a  selected frequent  pattern are  displayed on the map with additional 
information  about  quality  measures  and  likely  further  attributes.  For  example,  the 
consistency metric describes a measure for the distinctiveness of attributes in a given 

Figure 3. Frequent Pattern Store.

Figure 2. Scale-dependent frequent pattern mining.



frequent pattern. A concept with high redundancy between the values of its attributes is 
assumed to be less consistent than a concept having attributes with clearly separated 
value domains. 

5. Conclusions
We  described  a  framework  for  exploring  VGI  based  on  scale-dependent  frequent 
pattern  mining.  A  motivation  for  our  work  is  the  fast  and  efficient  integration  of 
heterogeneous  user-generated  geodata  and  to  merge  all  information  available  for 
certain geographic objects. Another motivation is to help users using VGI based on 
automatically generated quality measures and extracted concepts. A lot work needs to 
be done regarding the transformation of textual descriptions into transaction objects, 
and  an  evaluation  of  discovered  patterns  for  several  data  sources  needs  to  be 
conducted. Currently, we are building classification models on top of the determined 
patterns, to improve the extraction of concepts of the heterogeneous VGI.
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