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1. Introduction 
Practical geographic problems often involve multiple objectives used by analysts to 

describe the quality of a solution. Multiple-objective genetic algorithms (MOGA) are 

capable of generating a population of solutions where each solution represents a trade-

off in optimality between the multiple objectives. In the nomenclature of MOGA, the 

algorithm’s decisions towards optimality are driven by natural selection, which prunes 

solutions towards specific objectives. This can be thought of as a global search 

heuristic that applies to all problems. Recent research in computer science has 

explored the design of memetic algorithms, which add cultural learning components 

into genetic algorithms (GAs) to exploit problem-specific knowledge (Knowles and 

Corne 2005).  The notion of culture, or local social rules and norms, can adapt global 

search heuristics to produce specific solutions that are pertinent for the problem at 

hand. It is suggested that incorporating problem-specific knowledge can improve the 

performance of a MOGA (Corne and Knowles 2003). Specifically, geographic 

problems can be characterized by spatial patterns and topology, which are rarely 

included in MOGAs, but could be leveraged as part of a memetic algorithm for 

generating efficient solutions that incorporate spatial characteristics. Yet, little research 

has been presented which explicitly includes geographic constructs in genetic 

algorithms. Memetic algorithms are an extension of GAs. In a memetic algorithm, 

after the genetic operators are applied to the population, each solution in the 

population undergoes a refinement step that seeks to improve objective performance. 

This study focuses on the design of a memetic algorithm, which employs NSGA-II 

(Deb et al 2002) as the method of global search for solutions, and the AMOEBA 

spatial autocorrelation clustering technique (Aldstadt and Getis 2006) as the problem-

specific local search heuristic to improve individual solution quality. The local 

heuristic is specifically selected for the problem of neighborhood boundary delineation 

for health modeling in Accra, Ghana, Africa. An optimization problem is formulated 

with two objective functions.  By applying spatial characteristics to the MOGA search 

heuristic, optimized neighborhoods are explored within the function space.  

 

2. Background 
Spatial optimization methods belong to a class of techniques that aim at generating 

solutions representing a location or geographic arrangement of locations that perform 

well on the problem objectives. Upon formulating an optimization problem an analyst 

must decide how to generate a solution or even multiple alternative solutions to the 

problem. It is proven by “No Free Lunch” (NFL) theorems that all search and 

optimization algorithms are equal in average performance over all problems (Corne 

and Knowles 2003, Wolpert and Macready 1997). What follows from the NFL 

theorems is the supposition that incorporating problem-specific knowledge to guide 

the search for optimal solutions can make one algorithm perform better than another 

(Wolpert and Macready 2005, Corne and Knowles 2003).  



Genetic algorithms are heuristics inspired by Darwinian ideas of evolution 

suggesting that fit members will emerge in a population through natural selection. A 

genetic algorithm begins with an initial randomly generated population of individuals, 

or potential solutions. Decision variables (locations, for example) of the optimization 

problem are termed chromosomes in the GA, which are often a string of bits or an 

array of values, where each value is called a gene. Typically, individual solutions with 

high fitness (parents) are selected for reproduction using genetic operators such as 

selection, crossover, and mutation, which will hopefully result in higher performing 

children. 

MOGA heuristics may require a large number of computations because many 

solutions are evaluated at each generation. The geographic information science 

literature has devoted little attention to the design of MOGAs that incorporate problem 

specific knowledge to improve convergence towards a Pareto set, and also reduce 

computation time. Xiao (2008) presents a framework to exploit spatial structure in 

GAs, and strives to avoid approaches that are too specific to individual problems. Tong 

et al. (2009) introduce in their single objective genetic algorithm a crossover operation 

that is specific to facility location problems and incorporates the geographic 

arrangement of facilities to promote dispersion. In this research we introduce a 

memetic algorithm that leverages geographic knowledge of the diversity in average 

neighborhood size and the diversity of the average neighborhood local spatial 

autocorrelation within the MOGA population. 

 

3. Methodology 
The memetic algorithm in this research draws on geographic knowledge by (1) 

adapting genetic operator probabilities based on the diversity in spatial pattern among 

the population of solutions, and (2) introducing a spatially driven refinement step into 

a MOGA based on the AMOEBA spatial clustering heuristic. Fuzzy adaptation is a 

technique that examines the population throughout execution of the algorithm and 

adjusts operator probabilities to attain better solutions (Tarokh 2008). We use a 

geographic metric to examine the population and provide feedback by changing 

operator probabilities. 

The AMOEBA algorithm for spatial clustering (Aldstadt and Getis 2006) is used as 

a local search heuristic for the memetic algorithm. AMOEBA is a greedy algorithm 

that builds contiguous areas (clusters) from polygons by using the local spatial 

autocorrelation of a polygon attribute. In AMOEBA, a seed (starting polygon) is 

chosen, and adjacent polygons are added to form a cluster if they increase the spatial 

autocorrelation statistic for the cluster of polygons. This research uses the local Gi* 

statistic of spatial autocorrelation (Ord and Getis 1995) to guide the AMOEBA 

algorithm. 

 

3.1 Model Formulation 
One task within a larger project examining health in Accra, Ghana is the optimal 

delineation of neighborhood (cluster) boundaries using enumeration areas (EAs).  Data 

concerning health outcomes is only present for a subset of EAs, but variables that 

impact health are measured for all EAs and utilized as inputs for boundary delineation 

with the AMOEBA algorithm.  An ideal neighborhood solution would demonstrate 

high spatial autocorrelation for a known factor that influences health, as well as high 

R
2
 values for the regression model of a health outcome. The individual EAs in a given 

neighborhood are used to estimate the health outcome at the neighborhood level in the 

regression model.  Two objective functions are formulated to determine optimality of a 



neighborhood solution.  The first is to maximize the R
2
 of a linear regression that 

estimates average body mass index (BMI) of a neighborhood, and the second is to 

maximize the average Gi* value of neighborhoods in the solution, thus maximizing 

homogeneity of the neighborhood characteristic of interest, socio-economic status.  

The goal is not necessarily to find a neighborhood set that best predicts health 

outcomes, but rather to explore and understand how small scale geographical changes 

can impact both spatial autocorrelation of neighborhoods, and global statistical 

models.   

3.2 A Spatial Memetic Algorithm 
The non-dominated sorting genetic algorithm II (NSGA-II) (Deb et al. 2002) is the 

MOGA that we use as the basis for our memetic algorithm. First AMOEBA is used to 

generate a neighborhood cluster of socio-economic status from each possible seed 

enumeration area. For initial MOGA solutions these neighborhoods are randomly 

selected until each enumeration area belongs to a cluster, and overlapping clusters are 

merged to create a spatially contiguous neighborhood map. The genetic crossover 

operator is applied by spatially overlaying and intersecting two solutions, then 

repairing any neighborhoods that do not meet the contiguity constraint (Xiao, 2008). 

Swapping the neighborhood membership of EAs that lie on the boundary of two 

neighborhoods carries out the genetic mutation operator in the algorithm. 

NSGA-II was augmented to include a fuzzy adaptation (Tarokh 2008) of the 

probabilities assigned to each genetic operator (mutation and crossover) based on two 

metrics, one describing the diversity of the population of solutions in terms of 

objective function values, or spread (Deb 2001), and another describing the spatial 

diversity of the population using the variance in the average area of clusters within the 

population. This methodology promotes geographically different solutions in terms of 

average neighborhood size and also strives to generate solutions that represent a wide 

range of objective function trade-offs. Fuzzy rules were defined with the notion that in 

a diverse solution set crossover should be applied with higher probability to create 

more high-performing individuals in the population, but in a low diversity solution set 

mutation should be applied with higher probability to increase diversity of the 

population by introducing solutions with potentially dissimilar chromosomes. 

After applying genetic operators and adaptation in each iteration, the AMOEBA 

algorithm is used to modify clusters by applying the mutation operator to the solution, 

but only accepting mutations of the genes if they increase the Gi* of socio-economic 

status in the solution’s neighborhood clusters (Figure 1). 

 

 



 
Figure 1. AMOEBA is used as a local improvement step in the memetic algorithm. A 

small subset of two neighborhoods delineated in Accra, Ghana is shown in (a.). The 

seed neighborhood (yellow) starts with a Gi* value of 8. Each boundary EA is 

swapped with the adjacent neighborhood (green) and if the Gi* value increases it is 

kept as part of the seed neighborhood. In this example, the southernmost adjacent EA 

produces a neighborhood with a greater Gi* value of 12, while the northernmost 

adjacent EA does not increase the Gi* value and so is not included in the resulting 

neighborhood (b.). 

 

4. Conclusion 
A spatial memetic algorithm was designed with the ability to provide a set of decision 

options that are diverse in objective values and geographically unique. In comparison 

to solving the optimization model with a standard implementation of NSGA-II, spatial 

fuzzy adaptation preserved objective diversity effectively. Our memetic algorithm 

leverages knowledge of the local spatial autocorrelation of socio-economic status in 

neighborhoods to guide local improvements to solutions. Improving individuals by 

introducing the notion of cultural, problem-specific, knowledge using the AMOEBA 

algorithm increased the average objective performances of decision alternatives. 

Further research will probe into the implications of using the delineated neighborhoods 

of the memetic algorithm solutions as the spatial units for analysis related to the BMI 

health outcome. It is expected that the form of the memetic algorithm utilized in this 

research is applicable to a wide variety of geographic representations of decision 

problems. Future work will recommend a framework for implementing adaptation and 

local spatial search heuristics in the memetic stage of the algorithm for problems with 

the generalized geographic structures of points, networks (lines), and areas (polygons). 
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