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1. Introduction
In  the  event  of  a  nuclear  accident  at  a  power  plant,  a  good insight  in  the  spatial 
distribution of radiation is important for taking countermeasures. A useful tool in this 
setting  is  an  atmospheric  transport  model.  These  models  (e.g.  Brandt  et  al.  2000) 
simulate the spread of radiation accounting for, among others, wind direction, wind 
speed, stability of the atmosphere  and radioactive  decay.  In addition to the model, 
information comes from radiation monitoring networks. The challenge that faces the 
modeller is to model the spread of radiation combining the information from the the 
atmospheric transport model and the monitoring network.

The most basic approach is to let the modeller make an expert judgement of the 
parameters  given  the  observations  from  the  monitoring  network  and  his  own 
experience. A more formal and objective approach would be to calibrate the model on 
the observations (e.g. Haupt et al. 2009). Alternatively, a probabilistic approach is to 
use sequential data assimilation. This involves defining the uncertainty in the model 
and the observations and how these develop in time. At any given time the best model, 
given the data,  can be obtained from this. Data assimilation techniques include the 
extended  kalman  filter  (Rojas-Palma  et  al.  2003) and  the  ensemble  kalman  filter 
(Zheng et al. 2010). The main drawback of the kalman type algorithms is that they do 
not perform well for non-linear models (Simon 2006), such as atmospheric transport 
models.

A popular data assimilation method, well suited for nonlinear models is the particle 
filter  (Risfic  et  al.  2004).  The  particle  filter  samples  parameter  settings  from 
probability  distributions  of  the  model  inputs,  generating  a  set  of  possible  model 
solutions. Comparing those possible solutions to observations allows the particle filter 
to choose which solution performs well, and should be allowed to continue while bad 
performing solutions are eliminated. This process is called resampling in particle filter 
terms.  The  particle  filter  is  a  numerical  Bayesian  estimator,  estimating  the  best 
probability distribution of the model given the observations. 

In  this  paper  we  present  results  of  using  an  atmospheric  transport  model  in 
combination with a particle filter. The results involves using the ETEX tracer dataset. 
We compare a Monte Carlo approach, no monitoring network observations are used 
for assimilation, to two particle filter runs with increasing amounts of data used for 
assimilation. In this case Monte Carlo acts as a base line, allowing us to estimate the 
performance of the particle filter.



2. Background

2.1 ETEX tracer dataset
During the ETEX experiment,  a non-reactive tracer  (PMCH) was released into the 
atmosphere on two seperate occasions (Nodop et al. 1998) at Rennes located in the 
North-West of France. In this study we focus on the first ETEX release. At 16:00 GTC 
on October 23 1994 the first release of tracer started and lasted for 12 hours. During 
the experiment a network of 168 stations across Europe monitored the spread of the 
PMCH, recording the amount of PMCH above background levels in ng/m 3. Nodop et 
al. (1998) gives a very detailed description of both ETEX releases.

2.2 NPK-PUFF model
The NPK-PUFF (Verver and de Leeuw 1992) model is used to simulate the spread of 
PMCH following the release. NPK-PUFF is a so called Lagrangian puff atmospheric 
transport model.  The model solve the continuous release of radioactive material  by 
releasing so called puffs every timestep (Brandt et al. 2000). These puffs are gaussian 
shaped ellipsoids that are advected according to meteorological information. The puffs 
grow as they travel. In addition, processes such radioactive decay are also taken into 
account. 

2.2 Particle Filter implementation
The particle filter samples from the probability distributions of the input parameters, 
e.g.  wind  speed  and  wind  direction,  to  create  a  set  of  possible  model  outcomes, 
particles.  When observations  are  available,  this  set  of  particles  is  compared to  the 
observations, calculating the performance of each particle. Well performing particles 
are copied and poorly performing particles are eliminated. In this way the best model 
outcome, given the observations, is obtained.

In this study we chose to treat following model inputs randomly: wind direction, 
wind speed and  lateral  diffusion  of  the  radiation.  For  the  wind direction  for  each 
particle  we drew a  rotation  angle  form a  normal  distribution  with  zero  mean  and 
standard deviation of 20 degrees. This rotation angle was used to rotate the entire wind 
field. For the wind speed we uniformly drew a factor from the range 0.5 to 2, taking 
care to get an equal amount of samples between 0.5 to 1 and 1 to 2. In regard to the 
lateral growth we uniformly drew between 1/3 and 3. Resulting in particles that vary in 
diffusion rate between three times as slow and three times as fast as the standard NPK-
PUFF diffusion rate.

When calculating  the  performance  of  each  particle,  we used the  normal  weight 
function as described in Simon (2006). We used 300 particles in our analysis. Using 
less particles speeds up calculations. However, the risk of having too little particles to 
accurately  describe  the  probability  density  functions  of  the  input  variables  also 
increases. The amount of 300 particles presented a good compromise. For resampling 
we used the Sequential Importance Resampling scheme  described by  Gordon et al. 
(1993).



Figure  1: Development in time (rows) of the exceedance probability of 0.1 
ng/m^3  for  the  three  modeling  options  (columns).   The  dots  mark 
observations below the threshold and the crosses mark observations above the 
threshold. The large cross shows the release location.



3. Preliminary results
In this paper we compared three runs that consist of a set of possible model outcomes. 
One is Monte Carlo (MC), which does not use any data to update the model. The other 
two use the particle filter, where one uses observations on three moments in time (PF1) 
and the other on seven (PF2). Figure 1 shows these runs in a lattice of spatial plots, 
where the color represents the probability of exceeding 0.1 ng/m3. The columns in the 
lattice of plots show the different runs, the rows show different time steps. By using 
this low threshold the maps show the spatial extent of the set of particles. In addition to 
the  color,  the  observations  from the  monitoring  network  are  also shown.  Dots  are 
observations below the threshold and crosses above the threshold. Important to note is 
that run PF1 stops assimilating data at the second row in figure 1 and run PF2 at the 
third row.

From figure 1 it is obvious that the particle filter keeps the set of model outcomes 
closer  to  the  observed  values,  presenting  a  much  better  estimate  of  the  spatial 
distribution of radiation levels. Run PF2 performs better than PF1 after row number 
two, which is to be expected because in that case observations are still used to improve 
the model. The last row in figure 1 shows that after some time the improvement of 
assimilating data becomes smaller.

Figure 2 shows the development of the Mean Squared Error through time for the 
three runs. The vertical lines represent times that data is used to improve the model. 
This figure supports the results from figure 1, PF1 and PF2 outperform MC when data 
is assimilated. After a while the improvement of assimilating data is gone.

4. Preliminary conclusions
In this study the NPK-PUFF atmospheric transport model was used to simulate the 
spatial  distribution  of  PMCH  tracer  follwing  its  release.  Three  scenarios  were 
generated, where one used no data to improve the model (Monte Carlo) and the other 
two where particle  runs with increasing amounts  of observations.  Comparing these 
three  scenarios  to the observed PMCH tracer  observations  allowed us  to  asses  the 
performance of the particle filter.

The preliminary results from this study show that the particle filter is successful in 
modelling  the spread of a tracer  following a release.  In addition,  it  also shows an 
improved performance to Monte Carlo which does not use observations to improve the 
model outcomes.

Our focus for future research will be on how to make decisions, e.g. evacuation, 
based on the results from the particle filter. Issues in this context include how to make 
a boolean decision based on a probability distribution and see how errors in the model 
and errors in the inputs of the model impact the decision.
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Figure  2:  Development  of  Mean  Squared  Error  in  time.  Vertical  lines  represent 
assimilation moments.
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